

EFEITOS DO CARREGAMENTO DE VENTO NAS ESTRUTURAS E FUNDAÇÕES DE TORRES DE LINHAS DE TRANSMISSÃO

LUCAS MARTINS DA SILVA AZEREDO

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Engenharia Civil da Universidade Federal do Rio de Janeiro – Campus Macaé, como requisito parcial para aquisição do título de Engenheiro Civil.

Orientador: Gustavo Vaz de Mello Guimarães Co-orientador: Lucas Lisbôa Vignoli

Rio de Janeiro Agosto de 2019

EFEITOS DO CARREGAMENTO DE VENTO NAS ESTRUTURAS E FUNDAÇÕES DE TORRES DE LINHAS DE TRANSMISSÃO

LUCAS MARTINS DA SILVA AZEREDO

TRABALHO DE CONCLUSÃO DE CURSO APRESENTADO AO CURSO DE ENGENHARIA CIVIL DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO – CAMPUS MACAÉ, COMO REQUISITO PARCIAL PARA AQUISIÇÃO DO GRAU DE ENGENHEIRO CIVIL

Examinado por:

Prof. Gustavo Vaz de Mello Guimarães, D. Sc. Universidade Federal do Rio de Janeiro

Prof. Lucas Lisbôa Vignoli, M. Sc. Universidade Federal do Rio de Janeiro

Prof. Esdras Pereira de Oliveira, D. Sc Universidade Federal do Rio de Janeiro

RIO DE JANEIRO, RJ – BRASIL AGOSTO DE 2019 Azeredo, Lucas Martins da Silva

EFEITOS DO CARREGAMENTO DE VENTO NAS ESTRUTURAS E FUNDAÇÕES DE TORRES DE LINHAS DE TRANSMISSÃO – Rio de Janeiro 2019.

IX, 170 p.: il.; 29,7 cm.

Orientador: Gustavo Vaz de Mello Guimarães Co-orientador: Lucas Lisbôa Vignoli

Projeto de Graduação – UFRJ/ Macaé/ Curso de Engenharia Civil, 2019.

Referências Bibliográficas: p. 151 - 155.

1. Análise Modal, 2. Efeitos Dinâmicos, 3. Fundações, 4. Linhas de Transmissão, 5. Travessias 6. UFRJ/Macaé.

I. Guimarães, Gustavo Vaz de Mello, II. Universidade Federal do Rio de Janeiro, Campus Macaé, Curso de Engenharia Civil III. Efeitos do Carregamento de Vento nas Estruturas e Fundações de Torres de Linhas de Transmissão.

DEDICATÓRIA

Dedico este trabalho, primeiramente, a meu filho Ícaro por ser a razão do meu viver e minha fonte de motivação. Dedico este trabalho também à Thaiane, por ser o único e verdadeiro amor da minha vida, por estar ao meu lado sempre, até mesmo nos momentos mais sombrios, e por me fazer seguir em frente quando eu já não acreditava. Dedico este trabalho também a meu pai, que sempre esteve ao meu lado inclusive quando eu mesmo não era capaz de enxergar.

AGRADECIMENTO

Agradeço primeiramente a meu orientador, o Professor Gustavo Vaz de Mello Guimarães, por colaborar com minha formação e meu crescimento profissional muito além deste trabalho. Gostaria de agradecer também ao meu co-orientador, o Professor Lucas Lisbôa Vignoli por compartilhar seu conhecimento e expertise no Método dos Elementos Finitos e no software ANSYS, também pela paciência e dedicação em ajudar até nos momentos mais inoportunos. Não poderia deixar de agradecer à Engenheira Mariana Souza Rechtman, cujo excelente trabalho foi uma referência valiosa e o auxílio com os temas relacionados à disciplina de estruturas foi vital para o desenvolvimento deste. Agradeço a todos que colaboraram direta e indiretamente com minha formação, tanto acadêmica quanto pessoal. Gostaria de deixar um agradecimento especial a meu prezado amigo Adalberto Assunção, que, com motivação quase que paterna, me ajudou em um dos momentos mais difíceis da minha vida.

Resumo do Projeto de Graduação apresentado à Universidade Federal do Rio de Janeiro/ Campus Macaé como parte dos requisitos necessários para obtenção do grau de Engenheiro Civil.

EFEITOS DO CARREGAMENTO DE VENTO NAS ESTRUTURAS E FUNDAÇÕES DE TORRES DE LINHAS DE TRANSMISSÃO

Lucas Martins da Silva Azeredo

Agosto/2019

Orientador: Gustavo Vaz de Mello Guimarães Co-orientador: Lucas Lisbôa Vignoli

Curso: Engenharia Civil

RESUMO: Torres de linhas de transmissão normalmente experimentam diversos tipos de carregamentos além de peso próprio sendo que as cargas provenientes da ação dos ventos, geralmente, são preponderantes no dimensionamento de suas estruturas e fundações. As cargas podem ser classificadas em invariáveis com o tempo (estáticas) e variáveis com o tempo. Carregamentos variáveis com o tempo podem ser tratados como carregamentos dinâmicos se as forças de inércia forem incluídas na análise da resposta. No projeto de fundações e estruturas para linhas de transmissão em grandes travessias de rios, os carregamentos e dimensões da estrutura (grandes períodos de retorno para os eventos de projeto e frequência natural reduzida) se tornam cada vez mais significativos conforme se buscam soluções mais arrojadas e econômicas. Neste sentido, o presente trabalho faz uma comparação do projeto de estruturas e fundações de torres de linhas de transmissão ponderando a ação dos ventos. Além disso, uma análise do comportamento estático e dinâmico do sistema torre-fundações considerando a interação solo-estrutura é realizada.

Palavras-chave: Análise Modal, Efeitos Dinâmicos, Fundações, Linhas de Transmissão, Travessias. Abstract of Undergraduate Project presented to the Federal University of Rio de Janeiro/ Macaé Campus as part of the requisites required to obtain the degree of Civil Engineer.

EFFECTS OF WIND LOADING ON STRUCTURES AND FOUNDATIONS OF TRANSMISSION LINE TOWERS Lucas Martins da Silva Azeredo

August/2019

Advisor: Gustavo Vaz de Mello Guimarães Co-advisor: Lucas Lisbôa Vignoli

Course: Civil Engineering

ABSTRACT: Transmission line towers typically experience various types of loads, in addition to the self-weight, and the wind loads are generally preponderant in the design of their structures and foundations. The loads can be classified as time-invariant (static) and variable over time. Variable loads over time can be treated as dynamic loads if the inertial forces are included in the response analysis. In the design of foundations and structures for transmission lines in large crossings of rivers, due to the high loads and dimensions of the structure (large return periods for the design events and reduced natural frequency), the influence of these effects becomes more and more significant as the search for bolder and more economical solutions for the structures and foundations project is sought. In this sense, the present work makes a comparison of the design of structures and foundations of towers of transmission lines pondering the action of the winds. In addition, an analysis of the static and dynamic behavior of the tower-foundations system considering soil-structure interaction is also performed.

Key-Words: Modal Analysis, Dynamic Effects, Foundations, Transmission Lines, Crossings.

SUMÁRIO

CAPÍTULO 1 – INTRODUÇÃO	16
1.1 TEMA	16
1.2 DELIMITAÇÃO	16
1.3 JUSTIFICATIVA	17
1.4 OBJETIVOS	19
1.5 METODOLOGIA	19
1.6 DESCRICÃO	20
CAPÍTULO 2 – CARREGAMENTOS DINÂMICOS EM LINHAS DE TRANSMI	SSÃO
	21
2.1 TORRES DE TRANSMISSÃO	21
2.2 CARREGAMENTOS	24
2.2.1 HIPÓTESES DE CARREGAMENTO	24
2.2.2 CARREGAMENTOS DEPENDENTES DO TEMPO	25
2.2.3 CARGA DE VENTO	29
2.2.3.1 CARGA DINÂMICA DE VENTO	31
2.2.3.2 FUNCÃO DE DENSIDADE ESPECTRAL	32
2.2.3.3 ESPECTRO DE POTÊNCIA DE KAIMAL (BLESSMANN, 1995)	32
2.2.4 CARREGAMENTO DE TERREMOTO	34
2.2.5 CARGA DE ROMPIMENTO DE CABO CONDUTOR	
2.2.6 DEGELO	43
2.2.7 GALOPE	
2.3 CICLOS DE CARGA E SUA DURAÇÃO (DASGUPTA, 2006)	
CAPÍTULO 3 – INTERAÇÃO SOLO-ESTRUTURA	50
3.1 MODELOS DE SOLO	50
3.1.1 MODELO DE WINKLER	52
3.1.2 MODELO CONTÍNUO ELÁSTICO	55
3.1.3 MODELO CONTÍNUO ELASTOPLÁSTICO	56
3.1.3.1 PARÂMETROS DO SOLO PARA MODELOS CONTÍNUOS	NÃO-
LINEARES (MODELOS DE PLASTICIDADE)	56
3.1.3.1.1 MODELO DE DRUCKER-PRAGER (DRUCKER & PRAGER.	1952)
	58
3.1.3.1.2 MODELO DE SUPERFÍCIE DE SUBCARGAS	60
3.2 REACÃO DO SOLO	61
3.2.1 COEFICIENTE DE REACÃO VERTICAL	61
3.2.2 COEFICIENTE DE REACÃO HORIZONTAL	62
3.2.2.1 AREIAS	64
3.2.2.2 ARGILAS MOLES	65
3.2.2.3 ARGILAS RIJAS	65
3.2.3 CURVAS P-Y	66
3.3 COMPORTAMENTO DINÂMICO DO SOLO	67
3.4 EFEITOS DA TAXA DE CARREGAMENTO NA RESISTÊNCIA DO SO	LO E
CAPACIDADE DE CARGA DA FUNDACÃO	69
CAPÍTULO 4 – MODELOS DE ANÁLISE DINÂMICA	70
4.1 CONSIERAÇÕES INICIAIS	70
4.2 FUNCÃO CARREGAMENTO	70
4.3 MODELO SIMPLES DE UM GRAU DE LIBERDADE (APOIO ENGAST	'ADO)
	71
4.3.1 CARGAS NO NÍVEL DA ESTRUTURA	71
4.3.2 CARGAS NO NÍVEL DA FUNDAÇÃO (MOVIMENTAÇÃO	DO
j (j	

SOLO/CARGA DE TERREMOTO)	71
4.4 CÁLCULO DA RESPOSTA PARA O MODELO SIMPLES DE UM GRA	AU DE
LIBERDADE	72
4.4.1 ABORDAGEM PELO DOMÍNIO DO TEMPO	75
4.4.2 ABORDAGEM PELO DOMÍNIO DA FREQUÊNCIA	75
4.4.3 ABORDAGEM ESPECTRAL (PROCESSO ESTOCÁSTICO PA	RA O
CARREGAMENTO)	76
4.4.4 ABORDAGEM DO ESPECTRO DE RESPOSTA	
4.5 MODELO DE INTERAÇÃO SOLO-ESTRUTURA	
4.5.1 MODELO DO PARÂMETRO DISCRETO	
4.5.1.1 FREQUÊNCIA COMBINADA DA FUNDAÇÃO E DA ESTRU	JTURA
(VELETSOS E MEEK, 1974, KRAMER 2004)	
4.5.1.2 MÉTODO DA IMPEDÂNCIA DA FUNDAÇÃO	80
4.5.1.3 FUNDAÇÃO EM ESTACA	81
4.6 MÉTODO DOS ELEMENTOS FINITOS (FEM)	82
4.6.1 ANÁLISE LINEAR E NÃO-LINEAR	82
4.6.2 AMORTECIMENTO ESTRUTURAL	83
4.6.3 MODELO DE SOLO NÃO-LINEAR (MODELO DE PLASTICIDAI	DE DO
SOLO)	84
CAPÍTULO 5 – ESTUDO DE CASO	
5.1 CONSIDERAÇÕES INICIAIS - LT 500KV TUCURUÍ-XINGU-JURU	PARI-
ORIXIMINÁ	
5.2 AS TORRES ANALISADAS	
5.2.1 GENERALIDADES	
5.2.2 DETERMINAÇÃO DA VELOCIDADE DO VENTO	
5.3 FUNDAÇÃO DA TORRE 241/1	
5.4 ENSAIOS REALIZADOS E CARACTERIZAÇÃO DO SOLO	104
CAPÍTULO 6 – DETERMINAÇÃO DOS CARREGAMENTOS E ELABORAÇÃ	ÃO DO
MODELO DE ELEMENTOS FINITOS	107
6.1 GENERALIDADES	107
6.2 CARREGAMENTOS	107
6.2.1 CONDICÕES DE CARREGAMENTO DE PROJETO	107
6.2.2 CONSIDERAÇÃO ESTÁTICA EQUIVALENTE	108
6.2.2.1 CONDUTORES, CABOS PÁRA-RAIOS E ISOLADORES	108
6.2.2.2 CARGAS DE VENTO NOS CONDUTORES E CABOS PÁRA-RAI	OS 110
6.2.2.3 CARGAS DE VENTO NOS ISOLADORES	111
6.2.2.4 CARGAS DE PROJETO.	113
6.2.2.5 VENTO NA ESTRUTURA	114
6.2.3 FATOR DE RAJADA DAS CARGAS DE VENTO	116
6.2.4 CONSIDERAÇÃO DINÂMICA NÃO-DETERMINÍSTICA	116
6.2.4.1 DEFINIÇÃO DAS SÉRIES TEMPORAIS DA VELOCIDADE DO V	ENTO
	117
6.2.4.2 DETERMINAÇÃO DO CARREGAMENTO DE VENTO	NÃO
DETERMINÍSTICO	118
6.2.4.3 GERAÇÃO DAS SÉRIES DE CARREGAMENTO	NÃO-
DETERMINÍSTICO NO SOFTWARE MATLAR	110
6.3 MODEL AGEM	119
6.3.1 MODEL AGEM DA TORRE	119
6.3.2 MODELAGEM DA FUNDAÇÃO	177
6 3 3 MODEL AGEM DO SOLO	174
	••••• 144

6.3.3.1 GENERALIDADES	124
6.3.3.2 TENTATIVA DA UTILIZAÇÃO DO MODELO CONTÍNUO	124
6.3.3.3 MODELO DE WINKLER NO SOFTWARE ANSYS®	126
6.3.4 CONSIDERAÇÃO DO AMORTECIMENTO ESTRUTURAL	PARA
ANÁLISE DINÂMICA	130
CAPÍTULO 7 – APRESENTAÇÃO E ANÁLISE DOS RESULTADOS	131
7.1 GENERALIDADES	131
7.2 ANÁLISE ESTÁTICA	131
7.2.1 TOPO DA FUNDAÇÃO ENGASTADO	132
7.2.2 INTERAÇÃO SOLO-ESTRUTURA (HIPÓTESE DE WINKLER)	134
7.2.3 ANÁLISE DAS ESTACAS COM MAIORES DESLOCAMENTOS	136
7.2.3.1 HIPÓTESE LINEAR DE WINKLER	137
7.2.3.2 MODELO NÃO LINEAR (CURVAS P-Y)	139
7.3 ANÁLISE MODAL	144
7.3.1 MODOS DE VIBRAÇÃO	144
7.3.2 FREQUÊNCIAS NATURAIS	147
7.4 ANÁLISE DINÂMICA	148
CAPÍTULO 8 – CONCLUSÕES	150
8.1 ANÁLISE ESTÁTICA	151
8.1.1 DESLOCAMENTO NA ESTRUTURA	151
8.1.2 ESTACA ISOLADA	151
8.2 ANÁLISE MODAL	152
8.3 ANÁLISE DINÂMICA NÃO-DETERMINÍSTICA	153
8.4 DIFICULDADES E SUGESTÕES PARA FUTUROS TRABALHOS	153
REFERÊNCIAS BIBLIOGRÁFICAS	155
ANEXO A – Boletim de Sondagem	162
ANEXO B – Divisão da Torre, Estrutura do Elevador e Cálculo das Forças Estát	icas de
Vento	167
ANEXO C – Perfis Metálicos Utilizados na Estrutura	176
ANEXO D – Curvas p-y	177

LISTA DE FIGURAS

Figura 1.1 - Horizonte 2012 (ONS)	18
Figura 2.1 – Carregamento Periódico (CIGRE SC B2 WG23, 2016)	26
Figura 2.2 – Carregamento Aleatório (CIGRE SC B2 WG23, 2016)	26
Figura 2.3 – Banda Estreita vs Banda Larga (Carregamento Aleatório) (CIGRE SC B2 V	WG23,
2016)	27
Figura 2.4 – Carregamento Transitório (CIGRE SC B2 WG23, 2016)	27
Figura 2.5 – Carregamento de Impacto (CIGRE SC B2 WG23, 2016)	
Figura 2.6 – Carregamentos Cíclicos (a) "bidirecional" $\tau_a = 0$ (simétrico) (b) "bidireciona	al"τa
>0 (assimétrico) (c) "unidirecional" $\tau_a = \tau_{cv}$ and (d) "unidirecional" $\tau_a > \tau_{cv}$ (Randoli	ph and
Gourvenec 2011)	
Figura 2.7 – Torre Autoportante (CIGRE SC B2 WG23, 2016)	29
Figura 2.8 – Histórico Temporal de Velocidade do Vento Típico (CIGRE SC B2 WG23)	2016)
ingula 2.0 Thistories reinportar ac versorialade as versor repres (crotter 50 52 + 025,	29
Figura 2.9 – Vários espectros de vento (Shimpi 1996)	30
Figure 2.10 – Espectro Especifico do Local de Lubbock Texas (George 1996)	31
Figura 2.11 - Espectro de potência do vento de Kaimal (Blessmann, 1995) e (Oliveira	2016)
i igura 2.11 Espectro de potencia do vento de Ramar (Diessmann, 1995) e (Onvena,	33
Figura 2.12 – (a) - Movimento Tínico de Macico Rochoso Ocasionando Movimentação d	o Solo
(b) Estrutura da Torre Sujeita ao Movimento Horizontal do Solo (CIGRE SC B2 WG23	2016)
(b) Estimating an infer sujerta ao informiento monzontar do solo ($CIORE SC D2 WO25$,	, 2010)
Figura 2.13 – Histórico Temporal Típico de Movimentação de Solo Devido a um Terr	remoto
(Dasgunta 2006)	34
Figura 2 14- aceleração horizontal - histórico temporal: au - = 0 32g em 2 s	
Figura 2.15 – aceleração vertical – histórico temporal: $a_{\text{Hmax}} = 0.21$ g em 1 s	
Figura 2.16 – Distribuição de Tensões na Provimidade (CIGRE SC B2 WG23, 2016)	
Figura 2.17 – Distribuiçãos de Esforços no Solo Durante um Terremoto (Eacciorusso	2006)
rigura 2.17 – Distribuições de Estorços no 5010 Durante um refremoto (racciórusso,	, 2000)
Figura 2 18 – Estado de Tensões Anós um Terremoto (Facciorusso, 2006)	39
Figure 2.19 – Esquema da Runtura do Condutor (McClure and Tinwai 1987)	
Figura 2.20 – Curva de Resposta Tínica de Condutor Rompido (Pevrot et al. 1980)	
Figura 2.21 – Montagem do Local de Testes da Linha de 230KV da Hydro Quebec (CIG	RE TR
515 2012)	
Figura 2 22- Tração Dinâmica no Condutor Medida vs. Prevista Linha Saint-Luc-de-Vin	cennes
230kV (CIGRE TR 515, 2012)	12 //2
Figure 2.23 Parda da Uma Linha da 735 kV am Quabac (1008 Ica Storm Lata Paul M	42 [avara)
Figura 2.25 – Ferda de Offia Effina de 755 KV effi Quebec (1998 fee Stoffi, Eate Faul M	<i>(cycic)</i>
Figura 2.24 Gelo Acumulado em uma Seção de Linha de Transmissão (Chen et al. 201	
Figura 2.25 — Conérios de Deposição de Calo Agumulado (Chen et al. 2015)	15).44
Figura 2.25 – Cellarios de Deposição do Gelo Acumulado (Chen et al, 2013)	45
Figura 2.20 – Galope de Cicio unico idealizado de uni vao (Havaid, 2003)	40
Figura 2.27 – Classificação dos Fioblemas (Modificado de Dasgupia, 2000)	4/
da Halmaa 2001)	1110200
Eigure 2.20 Ciolog de Cargo Equivalentes (Lin and Ling, 1000)	48
Figura 2.29 – Ciclos de Carga Equivalentes (Lin and Liao, 1999)	
riguia 5.1a) observa-se uma nustração da consideração de estacas em um modelo de	
Continuo, 0) uni modero discreto de moias com a utilização de curvas p-y. (Gomes Co	
Sallius, 1774/	2010
rigura 5.2 - (a) modelo de winkler (b) coenciente de reação vertical. (venoso e Lopes,	, 2010)
Figure 2.2 Modele de Winkley estendide yers esteses compander transmission	
rigura 5.5 - Modelo de Winkler estendido para estacas carregadas transversa.	mente

(Velloso e Lopes, 2010)	53
Figura 3.4 - Modelo contínuo elástico (Velloso e Lopes, 2010)	55
Figura 3.5 (a) - Curva de Tensão-Deformação Bilinear (b) Curva Elástica e Perfeitar	nente
Plástica (CIGRE SC B2 WG23, 2016)	57
Figura 3.6 – Modelo de Ducker Prager (Drucker & Prager, 1952)	59
Figura 3.7(a) – Modelo Cam-Clay (b) Modelo Cam-Clay Modificado (Roscoe e Burland,	1968) 59
Figura 3.8 – Escoamento Normal Superfície de Subcargas (Hashiguchi et al. 2006)	60
Figura 3.9 – Modelo de coeficiente de reação horizontal do solo para areias, real x adn (adaptado de Prakash e Sharma 1990)	nitido 64
Figura 3.10 – Modelo de coeficiente de reação horizontal do solo para areias, real y	versus
admitido (adaptado de Prakash e Sharma, 1990)	65
Figura 3.11 - Curva ""p-y" para modelagem do comportamento não-linear do solo	66
Figura 3.12 - Curvas p-v definidas para cada camada de solo. (Veloso e Lopes, 2002)	67
Figura 4.1 – (a) Função de Forcante Aplicada no Topo da Estrutura (b) Modelo do Sister	na de
Um Grau de Liberdade (UGDL) (CIGRE SC B2 WG23, 2016)	71
Figura 4.2 – (a) Função Forçante Aplicada no Nível do Solo (b) Modelo de Um Gra	au de
Elucidade (UODE) (CIORE SC B2 WO25, 2010) Figura 4.3 – Euroão Geral de Carregamento (Histórico Temporal) (CIGRE SC B2 WG23 /	···· /2 2016)
rigura 4.5 – Função Octar de Carregamento (Historico Temporar) (CIORE SE B2 WO25, 2	2010)
Figura 11 – Fluvograma Geral para Análise de Resposta Dinâmica (CIGRE SC B2 W	/ J IG23
2016)	7/U25,
Figura 4.5 — Modelo de Interação Solo-Estrutura (a) Estrutura de Mastro Único (E	Doste)
(Tilelight 4.5 Woodelo de Interação Solo-Estrutura (a) Estrutura de Mastro Oneo (1	78
Figura 4.6 – Funções de Impedância Para Estaças com Ponta Rotulada e Cabeça Enga	70 Istada
(Novak 1974)	82
Figura 4.7 – Modelo de Interação Solo-Estrutura – Método dos Elementos Finitos ()	FFM)
(modificado de Arun e Muthukkumaram 2015)	82
Figura 4.8 - Amortecimento de Rayleigh	02
Figura 4 9 – Sistema Solo-Estaca-Estrutura Considerado na Análise (a) Sistema de Uma F	Estaca
(b) um sistema de grupo de estaca 2x2 (Maheswari e Truman 2004)	85
Figura 4 10 – Modelo FEM 3D Quarter Usado para o Subsistema da Fundação (a) Uma e	estaca
(b) Grupo de Estacas 2x2 (Maheswari e Truman 2007)	86
Figura 4 11 – Histórico Temporal Linear e Não-Linear da Resposta da Cabeca da F	Estaca
(Maheswari e Truman 2004)	
Figura 4 12 – Espectros Lineares e Não-lineares de Fourier (Maheswari e Truman 2004)	
Figura 5.1 – Lotes de Linhas de Transmissão: 500 kV Tucurui - Xingú – Jurupari (ama	relo).
500 kV Jurupari – Oriximiná (azul) e 230 kV Jurupari – Laranial do Jari – Macapá (r	oxo).
IBAMA (2011)	87
Figura 5.2 –: Detalhe da Localização da Travessia (Adaptado de IBAMA, 2011).	88
Figura 5.3 – Detalhe do Vão da Travessia, com mais de 2 km (IBAMA, 2011)	88
Figura 5.4 – Comparação entre a Torre de Suspensão GTS 238/1 e a Torre Eiffel (Adapta	do de
Motta et al. 2014).	89
Figura 5.5 – Vista Panorâmica da Travessia com as Estruturas 238/1 e 241/1.	90
Figura 5.6 - Esquema do Processo de Lancamento dos Cabos na Travessia	90
Figura 5.7 – Geometria do Modelo das Torres GTS (Lin et al. 2014)	91
Figura 5.8 - Cabo AACSR/UGS 540 utilizado (HANGZHOU CABLE Co., LTD. 2012)	93
Figura 5.9 - Cadeia de Isoladores Torre GTS	94
Figura 5.10 - Perfis Tubulares Utilizados (Lin et al., 2014)	94
Figura 5.11 – Ligações Metálicas nos Perfis Tubulares	95

Figura 5.12 - Relação Entre as Velocidades do Vento Meteorológico a Uma Altura de 10m Dependendo da Categoria do Terreno e do Período de Média (Adaptado IEC 60826:2017)..97 Figura 5.13 - Isopletas de Velocidade Básica e Localização Aproximada das Torres Figura 5.14 – Esquema da Estrutura das Torres GTS e as Velocidades do Vento (m/s) Consideradas para Obtenção das Pressões e os Carregamentos de Vento ao longo da Estrutura. Figura 5.15 – Planta das Fundações da Estrutura 241/1 (Torre do Morro)...... 100 Figura 5.16 - Detalhe A com a Vista em Planta do Bloco......101 Figura 5.19 – Cortes AA e BB das Fundações da Estrutura 241/1 (Torre do Morro)...... 103 Figura 5.20 - Boletim Misto de Sondagem Torre 241/1 até 30 Metros de Profundidade 106 Figura 6.2 - Fator de Vento Combinado para os Condutores em Várias Categorias de Terreno e Alturas Acima do Solo (IEC 60826:2017).....111 Figura 6.3 - Fator de Vão (IEC 60826:2017)111 Figura 6.4 – Fator de Vento Combinado G_t (IEC 60826) 112 Figura 6.5 – Árvores de Carregamento para Cargas de Projeto (*Todas as cargas incluem os fatores de segurança; **DW representa o peso próprio (dead weight). ***Todas as cargas estão Figura 6.6 – Definição do Ângulo de Incidência do Vento (IEC 60826)...... 115 Figura 6.7 – Elemento BEAM188 (ANSYS, 2018) 120 Figura 6.8 a) – Vista Isométrica do Modelo Completo, b) – Vista Inferior do Modelo c) – Figura 6.11 – Detalhe das Fundações da Torre...... 123 Figura 6.12 – Vista Isométrica do Modelo Continuo de solo-fundação-estrutura...... 124 Figura 6.13 – Vista em Corte do Modelo Contínuo de Solo e Sua Interação com as Fundações Figura 6.14 – Elemento COMBIN14...... 126 Figura 6.15 – Interação Solo-Estacas – Hipótese de Winkler - em um dos Blocos de Coroamento Figura 7.1 – Hipotese 1 – carregamentos considerados nas análises estáticas (*Todas as cargas incluem os fatores de segurança; **DW representa o peso próprio (dead weight). ***Todas as Figura 7.2 – Diagrama de Deslocamentos horizontais da Estrutura na Análise Estática com a Figura 7.4 – Deslocamento da Estrutura na Análise Estática com Interação Solo-estrutura. 135 Figura 7.7 – Diagrama de Deslocamentos Horizontais nas Estacas (valores em metros) 138 Figura 7.8 – Diagramas de: (a) Esforço Axial (N); (b) Força Cortante (N); (c) Momento Fletor Figura 7.9 – Geometria da Estaca Mais Carregada com a Variação da Rigidez à Flexão Adotada Figura 7.10 - Modelo Utilizado no Software PileLAT......141

Figura 7.11 - Digrama de Deflexão da Estaca (PileLAT)	142
Figura 7.12 - Diagrama de Esforço Cortante para a Estaca Mais Carregada	143
Figura 7.13 - Diagrama de Momentos Fletores para a Estaca Mais Carregada	143
Figura 7.14 - Diagramas dos Seis Primeiros Modos de Vibração Considerando o To	opo da
Fundação engastado	144
Figura 7.15 – Frequência versus Modos de Vibração para Pés Engastados	145
Figura 7.16 - Seis Primeiros Modos de Vibração Para o Modelo com Interação Solo-Es	strutura
	146
Figura 7.17 – Frequência vs Modos de Vibração com Interação Solo-Estrutura	146
Figura 7.18 – Resposta do Deslocamento Máximo	148
Figura 7.19 - Deslocamento máximo para t = 0,82s.	149

LISTA DE TABELAS

Tabela 2.1 - Tipos de Estruturas Autoportantes (Quental, 2008)	22
Tabela 2.2 - Tipos de Estruturas Estaiadas (Quental, 2008)	23
Tabela 2.3 – Comparação Entre as Características dos Carregamento de Terremoto e de	Vento
· · · · · · · · · · · · · · · · · · ·	48
Tabela 3.1 – Valores de ks1 em MN/m3* para placas de 30,5cmx30,5cm, ou vigas com 3	0,5cm
de largura, assentes sobre areia (Adaptado de Terzaghi, 1955)	61
Tabela 3.2 – Valores típicos da constante de reação horizontal (n_h) em $MN/m^3 *$ (Terzaghi,	1955).
	64
Tabela 3.3 - Valores típicos do coeficiente de reação horizontal para argilas moles (adapt	ado de
Velloso e Lopes, 2010).	65
Tabela 3.4 - Valores de ks1 em MN/m3 para placas de 30,5cmx30,5cm, ou vigas com 3	0,5cm
de largura, assentes sobre argila pré-adensada (Adaptado de Terzaghi, 1955)	66
Tabela 3.5 Comportamento do Solo versus Nível de Deformação Cisalhante (Dasgupta,	, 2006)
	68
Tabela 5.1-: Propriedades do Condutor e do Cabo Pára-raios (Lin et al, 2014)	92
Tabela 5.2 - Características do Isolador (Catálogo SEDIVER)	93
Tabela 5.3 - Categorias de Classificação do Terreno (Adaptado IEC 60826:2017)	95
Tabela 5.4 - Fatores que Descrevem a Ação do Vento Dependendo da Categoria do T	erreno
(Adaptado IEC 60826:2017)	96
Tabela 6.1 - Fator de Correção τ da pressão dinâmica do vento de referência q ₀ devido a a	ıltitude
e temperaturas (IEC 60826:2017)	108
Tabela 6.2 - Estatísticas do Modelo	122
Tabela 6.3 – Hardware Utilizado para Modelagem	125
Tabela 6.4 – Rigidezes de Mola Modelo de Winkler	129
Tabela 7.1 - Esforços nos Apoios para a Situação de Vento Sinótico Transversal	134
Tabela 7.2 - Características das Estacas com Maiores Deslocamentos	137
Tabela 7.3 - Valores da Resistência Não-drenada ao Cisalhamento (Su) em Função de	o N _{SPT}
(Terzaghi et al, 1996)	139
Tabela 7.4 - Correlação Entre NSPT, Densidade Relativa e Ângulo de Atrito (Meyerhof,	1956)
	139
Tabela 7.5 - Propriedades das Camadas de Estratificação do Solo Aplicadas no Modelo	141
Tabela 7.6 - Frequências Naturais para Ambos as Estratégias de Modelagem	147

CAPÍTULO 1 – INTRODUÇÃO

1.1 TEMA

O presente trabalho trata do impacto da consideração das fundações e da interação soloestrutura nas análises estática, modal e dinâmica de torres de linhas aéreas de transmissão, especialmente de torres de grandes dimensões como as utilizadas em travessias de rios. Este trabalho também visa oferecer uma perspectiva sobre as considerações utilizadas para a obtenção dos esforços de vento a partir de análises estáticas em relação às características dinâmicas deste fenômeno, através de uma comparação entre os resultados dos dois tipos de análise.

A realização das análises propostas, bem como a construção dos modelos necessários, é um trabalho multidisciplinar, dentro da engenharia civil, que demanda a aplicação dos mais variados conhecimentos, tanto na área de Estruturas quanto de Geotecnia.

No transcorrer deste trabalho são abordados assuntos relativos, principalmente, à Dinâmica de Estruturas, à Análise de Estruturas e à Geotecnia. Estes temas são verificados a partir de correlações clássicas de propriedades dos solos inerentes ao estudo de sua interação com os elementos de fundação

Utilizando-se as ferramentas apresentadas são avaliados os valores dos deslocamentos máximos da estrutura considerando os diferentes tipos e hipóteses de análise, bem como o impacto das condições de contorno aplicadas no modelo (consideração do engastamento dos pés ou modelagem completa das fundações com a consideração da interação solo-estrutura) para a obtenção das frequências naturais e modos de vibração obtidos através de análise modal.

1.2 DELIMITAÇÃO

O estudo de caso do presente trabalho compreenderá as análises estática, modal e dinâmica não-determinística dos esforços de vento na estrutura 241/1 da Linha de Transmissão Tucuruí-Macapá-Manaus localizada na margem do Rio Amazonas na cidade de Almeirim, estado do Pará, Brasil.

São feitas duas análises estáticas, uma considerando o engastamento dos pés da torre e outra com a consideração das fundações e de sua interação com o solo. Para estas análises é considerado o vento sinótico transversal (90° em relação à linha), uma vez que este representa o pior caso para este esforço, pois nesta situação o vento incide perpendicularmente nos condutores com maior resultante. Nesta análise também é considerado o peso próprio da estrutura.

Para a análise modal, serão considerados as seis primeiras frequências e os seis primeiros modos de vibração em ambas as situações, torre com engastamento dos pés e consideração das fundações com interação solo-estrutura.

É realizada uma análise dinâmica com carregamento não determinístico para a obtenção do máximo deslocamento da estrutura.

1.3 JUSTIFICATIVA

Conforme colocado por Vieira (2009), o sistema elétrico brasileiro apresenta como particularidade um parque gerador hidrotérmico, com forte predominância de usinas hidroelétricas, e um sistema de transmissão com linhas de grande extensão.

Como os melhores aproveitamentos hídricos estão situados em locais distantes dos centros consumidores, o sistema elétrico conta com um extenso sistema de transmissão que viabiliza a troca de energia entre regiões e o aproveitamento da diversidade de regime hidrológico das diferentes bacias hidrográficas.

Atualmente, o sistema elétrico brasileiro compreende o Sistema Interligado Nacional – SIN, que abrange as regiões Sul, Sudeste, Centro-oeste, Nordeste e boa parte da região Norte, e os sistemas isolados, isto é, áreas geográficas ainda não integradas ao SIN, localizados basicamente na região Amazônica.

Cabe mencionar o caso específico de Roraima, cujo fornecimento energético depende da Venezuela através do Linhão de Guri, sendo este o único estado fora do Sistema Integrado Nacional (SIN) atualmente. Devido a essa dependência da energia venezuelana e das constantes interrupções causadas pela instabilidade política e econômica naquele país, o estado vem utilizando de usinas termelétricas acionadas sempre que há interrupção no fornecimento

O atendimento à demanda nos sistemas isolados é realizado, principalmente, por pequenas centrais geradoras, especialmente, termoelétricas a óleo diesel. O SIN, por sua vez, é um sistema hidrotérmico de grande porte, com mais de 100 GW de potência instalada, sendo que cerca de 85% da geração de energia elétrica é advinda de fontes hídricas.

Uma perspectiva da situação do Sistema Nacional Integrado (SIN) e dos sistemas isolados (Horizonte 2012), anterior à finalização das linhas de transmissão das quais trata o estudo de caso do presente trabalho é apresentada na Figura 1.1.

Figura 1.1 - Horizonte 2012 (ONS)

A partir da necessidade da integração dos sistemas isolados da região Norte e do aproveitamento do enorme potencial hidrológico dessa região em face da crescente demanda energética brasileira, surge então a necessidade da expansão do sistema de transmissão e com esta a necessidade de transpor os grandes rios característicos dessa região do brasil.

O Rio Amazonas, cuja travessia é tratada especificamente no estudo de caso deste trabalho, tal qual importante via hidroviária brasileira, necessita que sejam observadas distâncias mínimas previstas nas normas de navegação, o que, para o caso de travessias aéreas, culmina na necessidade de estruturas de enormes dimensões.

Considerando a prática corrente no projeto de estruturas e fundações para torres de linhas aéreas de transmissão e o fato de que em estruturas esbeltas com grandes alturas o impacto dos efeitos dinâmicos é ainda mais significativo, propõe-se com o presente trabalho propiciar uma medida do quão adequadas são as considerações usuais do dia-a-dia de projetos.

1.4 OBJETIVOS

O objetivo deste trabalho é fornecer uma perspectiva da importância da consideração da interação solo-estrutura e dos efeitos dinâmicos no projeto de estruturas e fundações para linhas aéreas de transmissão. Pode-se dizer que o principal objetivo deste trabalho é a obtenção do deslocamento translacional nos nós de maior deslocamento, para uma análise comparativa, das seguintes situações:

- Análise estática com engastamento dos apoios;
- Análise estática com a consideração da interação solo-estrutura;
- Análise dinâmica com carregamento não-determinístico e a consideração da interação solo-estrutura;

Pode-se citar ainda como objetivo secundário a obtenção das frequências naturais e modos de vibração da estrutura em ambas as condições de contorno estudadas, uma vez que são dados necessários à realização da análise dinâmica, e adicionalmente podem ser utilizados de forma a avaliar o impacto das condições de contorno nestas características da estrutura.

1.5 METODOLOGIA

Para as análises realizadas neste trabalho é construído um modelo de Elementos Finitos (FEM) com a utilização do software ANSYS[®]. São então realizadas análises estáticas e modais, com e sem a consideração da interação solo-estrutura (SSI), e uma análise dinâmica com carregamento não-determinístico.

Para as análises estáticas as forças exercidas sobre a estrutura foram determinadas conforme a norma internacional IEC60826, sendo então aplicadas a duas condições de contorno do modelo, considerando o engastamento dos apoios e a com a consideração da interação solo-estrutura. A interação solo-estrutura é considerada através do modelo de Winkler conforme Terzaghi (1955), para todas as análises.

São realizadas também duas análises modais, com e sem a consideração da interação solo-estrutura, para a determinação das seis primeiras frequências naturais e os seis primeiros modos de vibração da estrutura.

Finalmente, para a análise dinâmica é considerado um modelo matemático representativo das ações do vento definido com base no espectro de potência de vento de Kaimal com o amortecimento da estrutura estimado com base na matriz de amortecimento de Rayleigh. Obtida a resposta da estrutura, considerar-se-á para as finalidades deste estudo somente o máximo deslocamento (valor de pico).

1.6 DESCRIÇÃO

Segue a esta introdução o capítulo 2 no qual são abordadas as especificidades de torres de transmissão e os tipos de carregamentos atuantes sobre estas, esse capítulo abrange desde uma apresentação das particularidades técnicas de projetos de estruturas para linhas de transmissão às características dos carregamentos aos quais estas estão submetidas.

O capítulo 3 apresenta as estratégias para modelagem do solo com breves comentários sobre seu comportamento sob carregamento dinâmico e os efeitos da taxa de carregamento

O capítulo 4 discorre sobre a teoria envolvida na construção de modelos para análise dinâmica, abordando desde o modelo mais simples de um grau de liberdade ao modelo de Elementos Finitos.

O capítulo 5 apresenta o estudo de caso da torre de suspensão GTS da Linha de Transmissão de 500KV TUCURUÍ-XINGU-JURUPARI-ORIXIMINÁ

O capítulo 6 inclui toda a estratégia de construção de um Modelo de Elementos Finitos para as análises estática, modal e dinâmica, sem e com a consideração da interação soloestrutura. Também nesse capítulo são apresentadas as formulações para a determinação dos carregamentos estático e dinâmico de vento.

No Capítulo 7 são apresentados os resultados das análises realizadas para o estudo de caso, sendo realizadas comparações, além de uma breve discussão.

E finalmente no Capítulo 8, segue-se então às conclusões feitas a partir dos resultados obtidos, assim como um breve relato das dificuldades encontradas. São também apresentadas sugestões para uma eventual continuidade do presente trabalho.

CAPÍTULO 2 – CARREGAMENTOS DINÂMICOS EM LINHAS DE TRANSMISSÃO 2.1 TORRES DE TRANSMISSÃO

Uma torre de transmissão é uma estrutura montada com a finalidade de transmitir e receber energia, sinais de rádio e de tv, telecomunicações e outros sinais eletromagnéticos. Torres de transmissão podem ser separadamente identificadas como torres de energia elétrica e torres de telefonia celular dependendo do propósito ao qual atendem.

As torres de linhas aéreas de transmissão não são utilizadas apenas com a finalidade transmitir energia elétrica em grandes distâncias, mas atualmente, através da instalação de cabos pára-raios OPGW, por exemplo, servem simultaneamente ao propósito de transmitir telecomunicações como sinais de internet e telefonia. Essas torres, suas fundações e sua interação como o solo são o objeto de estudo do presente trabalho.

Conforme Gontijo (1994) as torres de linhas aéreas de transmissão podem ser classificadas segundo os seguintes critérios:

- <u>Quanto à Disposição dos Condutores:</u> podendo ser divididas em triangular, vertical e horizontal.
- Quanto ao Número de Circuitos: podendo ser divididas em circuito simples e circuito duplo.
- Quanto à Função na Linha: podendo ser divididas como:
 - a. Estrutura de Suspensão

As torres funcionam como estrutura de sustentação dos cabos condutores suspensos através de cadeias de isoladores, e dos cabos para-raios, suspensos por aparelhos. São utilizadas em maior quantidade na linha e usadas em alinhamento ou pequeno ângulo.

b. Estrutura de Ancoragem

É utilizada para ancoragem dos cabos. Pode ser classificada como terminal, quando usadas nas extremidades da linha de transmissão, ou como de ancoragem intermediária, quando colocada entre as estruturas de suspensão. Serve ainda como ponto de tensionamento, além de evitar o efeito cascata.

c. Estrutura em Ângulo

É utilizada em locais onde existe a necessidade de mudança de direção da linha de transmissão

d. Estrutura de Derivação

É utilizada caso seja necessária uma derivação em um ponto da linha.

e. Estrutura de Transposição

É utilizada para assegurar a simetria elétrica de uma linha obtida com a rotação das fases

• Quanto à Forma de Resistência das Estruturas: sendo classificadas como autoportantes e estaiadas:

Os tipos mais comuns de torres de linhas de transmissão são resumidos na Tabela 2.1 e na Tabela 2.2 abaixo:

Tipo de l	=strutura	Configuração	Características	Esquemas
Autoportante	Circuito Simples	Horizontal	Estruturas mais baixas	N N N
			Cargas reduzidas nas fundações	the share the
		Vetical	Menor largura de faixa	20052020
		Delta	Reduz as perdas elétricas	
		Compacta	Permite uma maior transmissão de energia	
	Circuito Duplo	Vetical	Menor largura de faixa	HE E
			Cargas maiores nas fundações	
		Triangular	Reduz as perdas elétricas	

Tabela 2.1 - Tipos de Estruturas Autoportantes (Quental, 2008)

Tipo de Estrutura	Configuração	Características	Esquemas
	Estaiada em V	Simplicidade Estrutural	X-
		Boa estabilidade e resistência	$\langle M \rangle$
	Portal estaiada	Menos econômica das estaiadas em V	
	Delta estaiada	Estruturas mais leves	
Estaiada/Circuito Simples		Facilidades na montagem mecânica Grande janela central para LTs acima de 500kV	
	Monomastro - Triangular	Estruturas mais leves	
		Facilidades na montagem mecânica	
	Chainette/Cross Rope	Estruturas mais leves	
		Facilidade na montagem mecânica Ocupa uma grande área de estais Permite uma maior transmissão de energia	

Tabela 2.2 - Tipos de Estruturas Estaiadas (Quental, 2008)

2.2 CARREGAMENTOS

Esta seção faz uma introdução aos tipos de carregamentos aos quais estão sujeitas as estruturas de torres de linhas aéreas de transmissão, as hipóteses de carregamento consideradas no projeto dessas estruturas e então aprofunda-se nos tipos de carregamento que dependem do tempo, uma vez que este é o foco deste trabalho.

Dentre as fontes de cargas que agem sobre estruturas de LT, podemos citar:

- Ação do Vento nos Cabos e na Estrutura
- Carga Devido ao Peso Próprio
- Cargas nos Pontos de Fixação dos Cabos (ruptura de condutor, galope, degelo, etc)
- Cargas Devido à Movimentação do Solo (deslizamentos, terremotos, etc)
- Cargas de Construção

Cabe mencionar que as cargas de terremoto e degelo não fazem parte da realidade brasileira, sendo mencionadas neste trabalho somente a título de conhecimento e desconsideradas no estudo de caso. Quanto ao galope, que é discutido na Seção 2.2.7 normalmente ocorre em situações de vento e acúmulo gelo na linha, por esta razão não é considerado em projetos no brasil. Entretanto, há relatos da ocorrência de galope em condutores sem a presença do acúmulo de gelo.

2.2.1 HIPÓTESES DE CARREGAMENTO

A seguir apresenta-se, conforme Gontijo (1994), exemplos das hipóteses de cálculo mais utilizadas para uma torre de linha de transmissão:

- Hipóteses básica 1 Considera-se os cabos intactos com o vento máximo em qualquer direção; em geral, verifica-se somente nas direções transversal, longitudinal e a 45°.
- Hipótese Básica 2 Considera-se a ruptura de um cabo para-raios com a aplicação do vento com velocidade reduzida. Quando a torre for projetada para sustentar dois cabos para-raios, tem-se duas hipóteses: uma para o rompimento do cabo da esquerda e outra para o rompimento do cabo da direita.
- Hipótese básica 3 Considera-se a ruptura de um cabo condutor em qualquer posição com aplicação do vento com velocidade reduzida. Esta opção irá gerar um número de hipóteses igual ao número de condutores.
- Hipótese básica 4 Considera-se cargas devidas ao lançamento dos cabos condutores e para-raios.

Em torres utilizadas em linhas de circuito duplo, estas hipóteses básicas também deverão ser verificadas para as condições de um único circuito montado. Além disso, todas as hipóteses básicas anteriormente citadas devem ser verificadas com as condições de carga vertical máxima e reduzida.

As condições de verificação da torre com carga vertical máxima e carga vertical reduzida se devem ao fato de o cálculo ser feito para uma família de torres, o que exige a verificação do carregamento vertical nas situações de vão gravante (distância entre os pontos de inflexão da catenária para os vãos adjacentes) máximo e mínimo. Em geral as solicitações máximas de tração nas fundações ocorrem com a condição de carga vertical reduzida.

Nas torres de ancoragem e de fim de linha, que utilizam mísulas retangulares ou trapezoidais, as cargas aplicadas nos pontos de fixação dos cabos são diferentes devido à desigualdade dos vãos adjacentes. Normalmente as cargas verticais e transversais são verificadas com a aplicação de dois terços da carga total em uma face da torre e o restante na outra.

2.2.2 CARREGAMENTOS DEPENDENTES DO TEMPO

Um conceito importante ao se tratar de grandezas dependentes do tempo é o conceito de espectro. De acordo com Alvarenga (2000), um espectro é uma representação das amplitudes ou intensidades - o que geralmente traduz-se por energia - dos componentes ondulatórios de um sistema quando discriminadas uma das duas em função de suas respectivas frequências. Em um espectro as componentes ondulatórias (fases) distinguem-se fisicamente umas das outras não por suas naturezas, mas sim pelas suas frequências. Pode-se citar o exemplo clássico do espectro visível, ou, no caso do presente trabalho, o espectro de vento.

Pode-se então apresentar os tipos de carregamento dependentes do tempo:

• <u>Carregamento Periódicos</u>, F(t), é um tipo especial de carregamento cuja magnitude varia com o tempo e se repete em intervalos regulares, e.g. funcionamento de uma turbina, conforme ilustra a Figura 2.1.

Figura 2.1 - Carregamento Periódico (CIGRE SC B2 WG23, 2016)

• <u>Carregamento Aleatório, X(t)</u> é um tipo especial de carregamento cuja magnitude varia com o tempo e.g. rajada de vento (Figura 2.2). A Figura 2.3 apresenta dois tipos de carregamentos aleatórios. O primeiro tipo apresentado é de "banda estreita" onde toda a energia do sinal (histórico temporal) está concentrada em torno de uma única frequência dominante. O segundo caso apresenta uma "banda larga" onde o espectro de energia cobre uma ampla faixa de frequência. Na Figura 2.3, X(t) é a função de força enquanto S_x representa a função de densidade espectral, ω representa a faixa de frequência, e Ω representa a frequência dominante.

Figura 2.2 – Carregamento Aleatório (CIGRE SC B2 WG23, 2016)

Figura 2.3 - Banda Estreita vs Banda Larga (Carregamento Aleatório) (CIGRE SC B2 WG23, 2016)

 <u>Carregamento Transitório, F(t)</u> é considerado como variando durante um curto período com forças geradas pela movimentação do solo durante a ocorrência de um terremoto (Figura 2.4).

Figura 2.4 - Carregamento Transitório (CIGRE SC B2 WG23, 2016)

<u>Carregamento de Impacto, F(t)</u> é uma classe especial de carregamentos dinâmicos onde o carregamento aplicado tem uma pequena duração, normalmente menos de um terço do período do sistema (CIGRE TB 524, WG B2.22, 2013). O período é expresso em segundos e é inversamente proporcional à frequência natural do sistema. Um exemplo seria o carregamento transitório do rompimento de um condutor ou uma carga

não-equilibrada proveniente do derramamento de gelo (ice shedding). A Figura 2.5 exemplifica o comportamento no tempo de um carregamento de impacto.

Figura 2.5 – Carregamento de Impacto (CIGRE SC B2 WG23, 2016)

Carregamentos Cíclicos são aqueles carregamentos que apresentam certo nível de regularidade tanto em magnitude quanto em frequência, dependendo da faixa de frequência, eles podem ser dinâmicos ou quase-estáticos. A variação desses carregamentos no tempo (ciclagem) pode se dar de duas formas: unidirecional e bidirecional, e a Figura 2.6 mostra os dois tipos de carregamentos cíclicos (Randolph & Gourvenec, 2011). Ciclagem unidirecional significa que as direções dos esforços permanecem as mesmas e a faixa de esforços varia entre um máximo e um mínimo, essa ciclagem geralmente ocorre quando o esforço médio é grande ou o esforço cíclico é pequeno. No carregamento cíclico direcional, o esforço se inverta repetidamente conforme o carregamento cíclico progride.

Figura 2.6 – Carregamentos Cíclicos (a) "bidirecional" $\tau_a = 0$ (simétrico) (b) "bidirecional" $\tau_a > 0$ (assimétrico) (c) "unidirecional" $\tau_a = \tau_{cy}$ and (d) "unidirecional" $\tau_a > \tau_{cy}$ (Randolph and Gourvenec, 2011)

2.2.3 CARGA DE VENTO

A carga de vento normalmente flutua aleatoriamente possuindo dois componentes: (1) velocidade média que é a média das velocidades durante um intervalo fixado, e (2) a parte flutuante, que define a intensidade da turbulência. A Figura 2.7 apresenta uma torre autoportante submetida ao carregamento de vento, F(t), nos pontos de fixação do condutor. A Figura 2.8 mostra um histórico temporal da velocidade do vento que pode ser convertido em um carregamento de vento através da relação na Equação 2-1.

Figura 2.7 - Torre Autoportante (CIGRE SC B2 WG23, 2016)

Figura 2.8 - Histórico Temporal de Velocidade do Vento Típico (CIGRE SC B2 WG23, 2016)

$$\overline{F}(t) = \frac{1}{2} \rho C_D \overline{V(t)}^2$$
 Equação 2-1

onde:

 $\overline{F}(t) =$ histórico temporal da carga média de vento;

 ρ = densidade do ar;

 C_D = coeficiente de arrasto;

 $\overline{V(t)}$ = velocidade média do vento.

O carregamento pode ser representado pela Equação 2-2 abaixo:

$$F(t) = \overline{F}(t) + \widetilde{F(t)}$$
 Equação 2-2

 \overline{F} é a parte média do carregamento agindo continuamente e está relacionada à parte média da velocidade do vento (linha pontilhada na Figura 2.9) enquanto $\widetilde{F(t)}$ está relacionado à parte flutante da distribuição da velocidade do vento na Equação 2-3. A parte turbulenta pode ser muito bem descrita pelos vários espectros de velocidade do vento mostrados na Figura 2.9.

$$\widetilde{F(t)} = \frac{1}{2} \rho C_D \widetilde{V(t)}^2$$
 Equação 2-3

onde:

 $\widetilde{V(t)}$ = componente turbulenta do vento.

Figura 2.9 – Vários espectros de vento (Shimpi, 1996)

O efeito da velocidade do vento pode ser mais bem descrito pela energia contida no espectro de vento. A Figura 2.10 apresenta um espectro de vento específico que foi desenvolvido baseado nas medições da velocidade do vento em um local aberto em Lubbock, Texas (George, 1996). A figura apresenta, no eixo das ordenadas, a densidade espectral normalizada (densidade espectral dividida pelo quadrado da velocidade efetiva de vento) em segundos e a frequência em Hz no eixo das abscissas, mostrando que a velocidade do vento flutua em uma frequência variando de 0.0005 a 5 Hz (ciclos/segundo). O período correspondente é 2000 segundos a 0.2 segundos. Também mostra que há muito mais energia no espectro em 0.05 Hz comparado a frequência de 0.5 Hz. A energia em frequências maiores que 1 Hz é insignificante.

Figura 2.10 – Espectro Específico do Local de Lubbock, Texas (George, 1996)

2.2.3.1 CARGA DINÂMICA DE VENTO

A carga dinâmica geral de vento F(t) pode ser dividida entre a parcela média constante e a parcela flutuante cuja variação de dá acima desse valor médio. Conforme Holmes (2007) pode ser demonstrado que:

onde:

 σ_F = parte flutuante da carga dinâmica de vento;

 \overline{F} = Carga média de vento;

 \overline{V} = Componente da velocidade média de vento;

 σ_V = parte flutuante da velocidade dinâmica do vento.

O formato acima permite uma análise espectral da resposta devido a um espectro de força de vento. O espectro de força pode ser criado a partir do espectro de velocidade do vento (Davenport, 1967). Isso é brevemente discutido em "Processo Estocástico" na Seção 4.4.3.

A transferência de carga da superestrutura para a fundação será na forma de arrancamento e compressão para uma torre metálica enquanto que para um poste tubular simples pode ser na forma de esforço cortante e momento no nível da fundação.

2.2.3.2 FUNÇÃO DE DENSIDADE ESPECTRAL

Para a determinação das séries de carregamentos de vento ao longo do tempo para a análise não determinística (Processo Estocástico) são utilizados espectros de potência do vento. A distribuição em frequências da energia cinética contida nos componentes harmônicos é indicada pelo espectro de potência da variância das flutuações do vento.

A contribuição da densidade espectral da variância de um dos componentes das flutuações do vento em torno da velocidade média indica a contribuição desse componente para a variância total da energia cinética contida nas diversas frequências (CHÁVEZ, 2006).

No presente trabalho, será utilizado o espectro de potência de Kaimal, apresentado por Blessmann (1995), pois esse apresenta a consideração da altura "z" na determinação da densidade espectral do vento e é amplamente utilizado em pesquisas científicas (Rechtman, 2018).

2.2.3.3 ESPECTRO DE POTÊNCIA DE KAIMAL (BLESSMANN, 1995)

O espectro de potência definido por Kaimal (Blessmann, 1995) é apresentado na Equação 2-5 e na Equação 2-6, e é calculado em função da altura "z" da torre em relação ao nível do terreno:

$$S^{V}(f,z) = \frac{200x \cdot {u_{*}}^{2}}{f \cdot (1+50x)^{5/3}}$$
 Equação 2-5

$$x(f,z) = \frac{f \cdot z}{V_Z}$$
 Equação 2-6

onde:

f =frequência em Hz;

 $S^{V}(f)$ = densidade espectral da parcela flutuante do vento na frequência f; x = frequência adimensional;

 u_* = velocidade de fricção ou velocidade de corte no escoamento do vento;

 V_Z = velocidade média do vento na cota z acima do nível do terreno em m/s.;

A velocidade de fricção é definida pela Equação 2-7 (Blessmann, 1995):

$$u_* = \frac{k \cdot \overline{V_z}}{\ln(\frac{Z}{Z_0})}$$
Equação 2-7

onde:

k = constante de Karman (considerada com valor de 0,4);

 z_0 = comprimento de rugosidade.

É apresentada a curva do espectro de potência do vento de Kaimal (Blessmann, 1995) na Figura 2.11. O eixo das ordenadas representa a densidade espectral, normalizada pela variância e o eixo das abcissas apresenta o número de ondas em ciclos por metro. A área delimitada sob a curva entre duas frequências é proporcional à energia total do sistema.

Figura 2.11 - Espectro de potência do vento de Kaimal (Blessmann, 1995) e (Oliveira, 2016)

2.2.4 CARREGAMENTO DE TERREMOTO

Danos de terremoto em torres de LT são frequentemente resultado de grandes deslocamentos das fundações expostas a deslizamentos de terra, falha do solo ou liquefação. Essas ocorrências normalmente levam a falhas estruturais localizadas ou a danos, entretanto não causam danos suficientes de modo a conduzir à inutilização da estrutura. A Figura 2.12 apresenta uma torre metálica típica submetida a um movimento do solo, $x_g(t)$. Um histórico temporal típico de aceleração do solo é mostrado na Figura 2.13.

Figura 2.12 – (a) - Movimento Típico de Maciço Rochoso Ocasionando Movimentação do Solo, (b) Estrutura da Torre Sujeita ao Movimento Horizontal do Solo (CIGRE SC B2 WG23, 2016)

Figura 2.13 - Histórico Temporal Típico de Movimentação de Solo Devido a um Terremoto (Dasgupta, 2006)

Apesar de a figura acima mostrar que a torre está sujeita apenas à componente horizontal da movimentação do solo, a literatura tem mostrado (Zadnik, 2016) que uma forte movimentação vertical do solo tem sido observada após todos os grandes terremotos,

especialmente em edifícios de concreto. Portanto, a análise de estruturas submetidas a carregamentos de sismos sem a consideração da componente vertical do movimento do solo pode resultar em risco de colapso, especialmente para aquelas construídas próximas da falha. Entretanto, parece não haver consenso sobre a importância do dano devido à movimentação vertical do solo entre os especialistas. Não foi relatada a influência da movimentação vertical do solo no projeto de torres metálicas de linhas de transmissão. Muito pouco se aprendeu nos recentes terremotos, apenas algumas experiências com influências secundárias em torres de linhas de transmissão localizadas em áreas montanhosas (deslizamentos de terra, rolamento de blocos rochosos) (Collier and Elnashai, 2001).

Por outro lado, foi relatado durante os recentes terremotos que a componente vertical do movimento do solo excedeu em muitas vezes a componente horizontal. A percepção generalizada entre os engenheiros é de que a componente vertical é menor que a horizontal. Normalmente, a razão entre os picos de aceleração vertical e horizontal do solo $(a_{v,max}/a_{h,max})$ era suposta como menor que um. Porém atualmente, muitos estudos confirmaram que $(a_{v,max}/a_{h,max}) > 1.0$ dentro de um raio de 5km do epicentro (Collier and Elnashai, 2001).

Além disso, a componente vertical do movimento do solo está associada à propagação vertical das ondas P, enquanto as componentes horizontais estão associadas às ondas S. O comprimento de onda da onda P é menor que o da onda S, portanto a frequência associada à componente vertical é maior que a da componente horizontal. Esse fato é ilustrado na Figura 2.14 e na Figura 2.15, com respeito ao bem conhecido histórico temporal da movimentação do solo do terremoto de El-Centro, 1940:

Figura 2.15– aceleração vertical – histórico temporal; $a_{Vmax} = 0,21g \text{ em } 1 \text{ s.}$

Geralmente, o pico do movimento vertical do solo antecede o do movimento horizontal (na Figura 2.14 e na Figura 2.15 a diferença de tempo é de 1 segundo). Nesse caso, pode ser válido projetar a fundação da estrutura separadamente para os efeitos de movimentos verticais e horizontais do solo.

A faixa de frequência da maioria dos grandes terremotos fica em torno de 0.5 --5.0 Hz (Bozorgina e Bertero, 2004). Este parâmetro é importante na avaliação de danos porque a maioria das estruturas de linhas de transmissão tem uma frequência natural na faixa de 0.5 --6.0 Hz. Por exemplo, a frequência natural de postes fica em torno de 1.0 Hz a 8.0 Hz, enquanto que para pórticos em H de subestações fica entre 0.5 Hz e 3 Hz (CEATI 3339, 2013).

Torres autoportantes usuais (torres com quatro pernas constituídas de treliças de perfis metálicos) têm frequência na faixa de 2.0 Hz a 6.0 Hz; as frequências mais baixas estão atribuídas a torres de suspensão, enquanto que as frequências mais elevadas são atribuídas às torres de ancoragem (ver seção 2.1). Essas frequências podem ser usadas para determinar se os carregamentos de terremoto vão governar o projeto e o dimensionamento dessas torres. Uma análise mais detalhada é necessária para avaliar a influência da carga sísmica nas estruturas/linhas de transmissão. Em geral, se as sequências de onda do terremoto possuem uma quantidade significativa de energia próxima à faixa de frequência natural do sistema então podem ocorrer significativos deslocamento e, consequentemente, danos (Eze e Ore, 2010). Nesse caso, a análise da resposta deve incluir a interação solo-estrutura.

Figura 2.16 - Distribuição de Tensões na Proximidade (CIGRE SC B2 WG23, 2016)

A Figura 2.16 apresenta as condições na proximidade onde a estrutura/fundação está localizada. As tensões no solo são representadas pelo esforço vertical, esforço lateral, e o esforço de cisalhamento in-situ. A distribuição dos esforços é mostrada em um único elemento. A Figura 2.17 apresenta a distribuição de esforços no elemento onde o esforço de cisalhamento cíclico, τ_{Cyc} devido ao terremoto é somado ao esforço de cisalhamento estático,, τ_D . A tensão cíclica de cisalhamento aumenta a deformação por cisalhamento do solo, Υ para um valor limite chamado tensão de cisalhamento volumétrica, Υ_v . Nesse ponto, a poropressão começa a aumentar e a resistência do solo ao cisalhamento começa a diminuir. Conforme o movimento continua, o solo se comporta como um fluido viscoso com enormes deformações.

Figura 2.17 - Distribuições de Esforços no Solo Durante um Terremoto (Facciorusso, 2006)

Ao final do movimento sísmico duas condições são encontradas. Dependendo do valor do esforço residual de cisalhamento, τ_d (Figura 2.18) o elemento de solo não estará mais em equilíbrio se este for maior que a resistência ao cisalhamento estática do solo, S_r ocorrendo então a liquefação solo. Por outro lado, se o esforço residual de cisalhamento depois de um terremoto é menor que a resistência ao cisalhamento estática, o solo retorna rapidamente ao estado drenado com deformações permanentes de menores magnitudes (deslocamentos limitados para taludes e assentamento permanente sob as fundações). Esse fenômeno é chamado de mobilidade cíclica (cyclic mobility).

Figura 2.18 – Estado de Tensões Após um Terremoto (Facciorusso, 2006)

Três métodos são usualmente utilizados para a determinação do índice potencial de liquefação: (1) Métodos Empíricos; (2) Métodos Simples; e, (3) Métodos Dinâmicos. Os detalhes deste fenômeno não são discutidos neste trabalho, pois sua ponderação somente se torna relevante em locais onde são considerados os efeitos de carregamentos sísmicos. O principal mecanismo de transferência de carga no nível da fundação é o grande movimento lateral devido às forças de inércia aplicadas à coluna de solo. É bem estabelecido na literatura que as cargas de projeto da estrutura não são governadas pela ação sísmica, mas sim por outros critérios de carga (vento, gelo, rompimento de condutor etc.). Entretanto, grandes movimentos da fundação e liquefação terão consequências com respeito à integridade estrutural e, portanto, uma boa compreensão desse fenômeno é necessária para projetos em regiões de ocorrência de sismos.

2.2.5 CARGA DE ROMPIMENTO DE CABO CONDUTOR

Durante a ruptura de um cabo condutor ou ferragem em regiões de suspensão e ancoragem/fim de linha, uma quantidade significativa de energia armazenada é liberada no sistema. Como resultado disso, a tensão inicial antes da falha cai repentinamente para quase zero e a corda do isolador de suspensão começa a oscilar para a direita conforme a Figura 2.19.

Figura 2.19 – Esquema da Ruptura do Condutor (McClure and Tinwai, 1987)

Conforme o isolador oscila para a direita, impõe uma força desequilibrada (perda de tração do lado esquerdo) no sistema, a qual não estava presente antes da ruptura. Essa força desequilibrada tem duas componentes: (1) uma parte transitória (dinâmica) que se dá com forte aumento e queda de tensão, seguida então de uma resposta quase que permanente; e, (2) a parte estática residual (estado estacionário) onde o movimento é amortecido após alguns minutos e o sistema fica em repouso. Peyrot et al (1980) forneceram uma explicação da ascensão e queda abrupta do fenômeno transitório até os dois primeiros picos em termos da transferência de energia do sistema antes e depois do rompimento, mostrado na Figura 2.20.

Figura 2.20 - Curva de Resposta Típica de Condutor Rompido (Peyrot et al, 1980)

A estimativa de cargas longitudinais em torres e seu efeito sobre a fundação requerem uma compreensão do mecanismo básico de transferência de energia de um sistema intacto (antes da ruptura) para um sistema danificado (após a ruptura). Se os efeitos da carga não forem redistribuídos dentro do sistema restante após uma falha e não puderem ser resistidos pelos componentes restantes na linha (redistribuição de forças após a falha), então isso desencadeará a propagação de falha de outros componentes além do ponto de partida (primeiro ponto de ruptura), e eventualmente um colapso progressivo (cascata) da linha. A Figura 2.19 ilustra o rompimento do condutor e a oscilação dos isoladores nos vãos sucessivos.

Para estimar o valor de pico da força dinâmica, é preciso incluir a inércia do cabo após o rompimento, além de sua rigidez, na análise. Basicamente, o problema após o rompimento é uma "resposta transitória do sistema" onde a oscilação é amortecida após alguns minutos e então se tem uma resposta de estado estacionário (parte estática residual). A relação típica entre a carga dinâmica de pico e a carga estática residual, geralmente definida como "fator de impacto dinâmico", pode ser significativamente maior que 1,0 e tão alta quanto 4,0 (Irvine, 1981). A Figura 2.21 mostra o esquema de um local de teste em que a Hydro Quebec realizou um ensaio de rompimento de condutor em uma linha de alta tensão não energizada (SAINT-LUC-DE-VINCENNES 230KV LINE). O local do teste foi totalmente instrumentado com células de carga conectadas ao condutor e aos extensômetros para medir a mudança de força (redistribuição) no sistema antes e depois do rompimento. Figura 2.22 apresenta alguns resultados típicos de testes.

Figura 2.21 – Montagem do Local de Testes da Linha de 230KV da Hydro Quebec (CIGRE TB 515, 2012)

a) Tensão do condutor na Torre 73 (Inicial 19.0 kN; Pico dinâmico 33 kN; residual 12.5 kN,

b) Tração no condutor da Torre 82 (Inicial 19.0 kN; Pico dinâmico 45 kN; residual 18.5 kN,

Figura 2.22– Tração Dinâmica no Condutor Medida vs. Prevista Linha Saint-Luc-de-Vincennes 230kV (CIGRE TB 515, 2012)

A Figura 2.23 mostra a perda catastrófica de uma linha de 735 kV em Quebec durante a tempestade de gelo de 1998. Esta linha em particular falhou em três locais diferentes e a operadora da linha perdeu quase 60 torres. Falhas de linha semelhantes também foram relatadas na Europa (Frandsen and Juhl, 1976) e nos EUA (Gupta et al, 1993).

Figura 2.23 - Perda de Uma Linha de 735 kV em Quebec (1998 Ice Storm, Late Paul Meyere)

Um aumento súbito de tração após a ruptura de um condutor irá impor uma carga transitória no membro estrutural ligado à fundação (perna para uma torre autoportante, base do poste para uma estrutura de poste tubular em aço). A medição de campo em uma linha de teste mostrou (Clarke, Richards and Ratley, 2006) que a transferência de carga na fundação é altamente oscilatória e a transferência de carga na fundação de uma torre metálica autoportante de quatro pernas mostrou um esforço rápido de arrancamento na fundação na ordem de 2.500 kN / s devido à carga do condutor rompido. Esse tipo rápido de arrancamento normalmente não é considerado no projeto. Portanto, o comportamento de uma fundação sob esse tipo de carga transitória rápida é objeto de investigação adicional. Isso é revisado nas referências deste trabalho, portanto, o presente trabalho discute de maneira teórica o efeito de cargas transitórias rápidas na capacidade de resistência ao arrancamento de fundações de linhas de transmissão.

2.2.6 DEGELO

O degelo é uma consideração de projeto que foge da realidade brasileira e, consequentemente, do estudo de caso do presente trabalho (torre de grande travessia de rio na região amazônica). Portanto, a consideração desse efeito será meramente teórica e apenas à título de conhecimento, uma vez que a abordagem desta se assemelha bastante à da carga de vento. A prática atual na abordagem do projeto é desenvolver os parâmetros meteorológicos básicos (vento, gelo) com base em valores de período de retorno específicos, como 25 anos, 50 anos, 250 anos etc. e calcular cargas usando várias equações de transformação baseadas na abordagem determinística. Por exemplo, a força vertical (V) numa torre típica vem da carga de gelo no cabo enquanto que a componente transversal (P) é devida ao efeito do vento sobre a torre e o condutor cobertos de gelo. A força longitudinal (H) surge primariamente de dois

cenários: (1) formação de gelo desigual nos vãos adjacentes à torre; e, (2) condutor rompido sob o carregamento de gelo parcial ou completo, ou sob condições normais de serviço sem gelo.

Os projetos típicos de linhas de transmissão em países que apresentam essa realidade consideram o carregamento longitudinal devido ao degelo como um carregamento estático desbalanceado. Entretanto, o mecanismo de formação é dinâmico e acontece quando o gelo cai do vão devido à mudanças de temperatura. O fenômeno de degelo também pode causar um salto do cabo, esforços dinâmicos adicionais nos cabos, e se não for devidamente controlado, pode causar problemas para a operação segura de linhas de transmissão, fazendo com que a linha sofra sérios danos. O condutor pode experimentar picos de tração e as estruturas podem experimentar grandes cargas desequilibradas. A Figura 2.24 apresenta o gelo acumulado em uma seção de uma linha de transmissão.

Figura 2.24 – Gelo Acumulado em uma Seção de Linha de Transmissão (Chen et al, 2015)

Embora IEC 60826 (Norma da International Eletrotechnical Commision "Critérios de Projeto para Linhas de Transmissão Aéreas") sugere a consideração de um critério específico no projeto, o processo de degelo em si é aleatório e, portanto, seu efeito líquido em uma torre (i.e. carga de desequilíbrio longitudinal) deve ser estimado para refletir esse fenômeno aleatório. Para avaliar a incerteza na previsão, um estudo de sensibilidade que inclua os efeitos de vários parâmetros importantes precisa ser considerado (por exemplo, vãos desiguais, efeitos da diferença de elevação, isto é, suportes em elevações diferentes entre si e em relação ao piquete central, espessura de gelo variável, etc.).

McClure et al. (2003, 2007) conduziu uma série de estudos para entender os efeitos da espessura do gelo, queda parcial e diferentes parâmetros de linha na resposta dinâmica de degelo em linhas de transmissão usando modelos numéricos. Uma linha elétrica de 110 kV na

Eslovênia foi estudada por Jak^se et al. (2001) para examinar os efeitos da queda do gelo. O estudo mostrou que a configuração defletida da linha e as oscilações de grandes amplitudes resultantes da carga de degelo eram problemáticas. O problema foi mitigado em algumas seções da linha através da instalação de espaçadores de hastes isolantes longos entre fases. Yang et al. (2014) realizou uma análise em grande escala de uma seção de uma linha considerando fenômeno de degelo. Uma seção de três vãos foi considerada com a massa equivalente do gelo acumulado simulado com cabos de aço. Medições foram feitas com respeito ao histórico temporal de trações e deslocamentos de meio de vão. Os resultados experimentais indicaram que o impacto do efeito é mais significativo para o local mais próximo do ponto de quebra. O efeito líquido das cargas longitudinais na fundação é muito semelhante ao imposto pela condição de cabo rompido. A Figura 2.25 apresenta cenários possíveis para o degelo das linhas.

Figura 2.25 - Cenários de Deposição do Gelo Acumulado (Chen et al, 2015)

2.2.7 GALOPE

De acordo com CIGRE SC B2.11.06 WG, a definição de galope é declarada da seguinte maneira: "galopar é uma oscilação de condutores simples ou de feixes devido à ação do vento sobre condutores cobertos de gelo ou neve", embora haja casos registrados de galope em condições sem gelo ou neve, decorrentes simplesmente do perfil do condutor exposto ao vento. Os movimentos do condutor são caracterizados por amplitudes que podem se aproximar ou exceder a flecha do condutor (possivelmente>10m) e dependendo das amplitudes e número de ciclos, frequências de até 3Hz". Carga dinâmica recorrente é gerada durante o galope e a carga é transmitida para a estrutura pelas ferragens, onde o condutor é conectado através da corda do isolador (essa conexão é tratada com mais detalhes no Capítulo 5). O movimento vibratório do condutor pode ocorrer em múltiplos ciclos, mas, por simplificação, apenas os movimentos de ciclo único e ciclo duplo são considerados. A Figura 2.26 apresenta algumas oscilações de ciclo único indicando vários níveis de galope.

Figura 2.26 - Galope de Ciclo único idealizado de um Vão (Havard, 2003)

Durante o movimento vibratório, a mísula da estrutura experimentará uma amplificação significativa da carga e a fundação também experimentará a mesma força oscilatória na direção vertical. No entanto, o galope também poderia criar um movimento de torção, o que poderia levar a um mecanismo de transferência de carga mais complicado para a fundação. Havard (2003) resumiu o trabalho do CIGRE SC B2.11.06 WG sobre a carga de amplificação dinâmica que uma estrutura pode experimentar durante o galope e isso parece ser, em geral, algo entre 1,0 e 2,7 vezes a carga estática. Normalmente, o galope acontece com muito pouco gelo no condutor, mas se houver uma quantidade significativa de gelo durante o galope, isso pode levar a grandes forças na fundação. Havard (2003) também apresentou um método aproximado de calcular a carga dinâmica no ponto de fixação, considerando o balanço do isolador durante o galope e a mudança do valor de tração entre dois vãos. Sob galope vertical de ciclo único, a fundação experimentará cargas cíclicas repetidas na direção vertical. Se a força de inércia for negligenciada, a fundação poderá ser submetida a muitos ciclos de carga de alta amplitude, podendo a resistência do solo se degradar dependendo dos ciclos de carga aplicados.

2.3 CICLOS DE CARGA E SUA DURAÇÃO (DASGUPTA, 2006)

A Figura 2.27 apresenta algumas classes típicas de cargas normalmente encontradas no projeto de engenharia. A figura foi modificada para incluir algumas das cargas que podem atuar nas fundações de linhas aéreas de transmissão. Em termo de cargas dinâmicas, a duração do carregamento pode ser tão curta quanto alguns segundos, para um rompimento de condutor, à várias horas, para uma forte tempestade de vento (carga de rajada).

Figura 2.27 - Classificação dos Problemas (Modificado de Dasgupta, 2006)

O tremor principal de um terremoto pode durar de 10 segundos a 2 minutos. O carregamento sísmico, como tal, possui um histórico temporal não-uniforme. Na Tabela 2.3 o período de cada impulso está dentro do intervalo de 0,5 a 2,0 segundos na, dando o número correspondente de ciclos na ordem de 20 a 60 (Dasgupta, 2006). Um galope típico pode ter uma frequência muito baixa, mas estar associado a grandes amplitudes podendo causar cargas dinâmicas significativas. A Figura 2.28 apresenta uma comparação das faixas de frequência dos

tipos de estrutura de transmissão em relação às principais estruturas de engenharia civil (pontes, edifícios, etc.).

Figura 2.28 - Faixa de Frequência de Excitação Dinâmica sob Vento e Terremoto (Modificado de Holmes, 2001)

Tabela 2.3 - Comparação Entre as Características dos Carregamento de Terremoto e de Vento

Item	vento	Terremoto
Intensidade básica	gradiente de vento	movimentação do leito rochoso
Distribuição de probabilidade típica	Gumbel	Frechet
DPR para máximo de 50 anos	10%-20%	40%-100%
meio de transmissão	ar	solo
causa da ação dinâmica	turbulência da camada de contorno	amplificação da superfície do solo
Forma típica do espectro	Espectro de Karman	Espectro de Kanai-Tajimi
Frequência Predominante	0,02Hz - 0,5Hz	0,5Hz - 2Hz
Tempo de duração	10min - 1hora	10s-2min

Uma fundação submetida a cargas cíclicas precisa ser analisada levando-se considerando todas as frequências associadas ao carregamento. O evento de rajada de vento de tempestade deve incluir o valor extremo de projeto que atua nos elementos da fundação. O número e a distribuição dos valores extremos usados devem ser típicos do local específico. As cargas calculadas devem ser convertidas para cargas máximas de projeto.

Para avaliar os impactos de cargas de diferentes amplitudes e frequências, pode ser apropriado derivar um espectro de estágio único cíclico equivalente a partir da carga do evento de projeto. Deve incluir um nível médio de carga, um intervalo de carga equivalente e um número equivalente de ciclos de carga, conforme a Figura 2.29. Deve-se notar que um pequeno número de grandes cargas cíclicas normalmente produz uma maior redução da capacidade de suporte dos solos do que um grande número de pequenas cargas, o que é um comportamento diferente de outros materiais. Dependendo do método de verificação escolhido, a amplitude de carga equivalente e o número equivalente de ciclos de carga podem ser determinados usando um método proposto por Lin e Liao (1999).

Figura 2.29 – Ciclos de Carga Equivalentes (Lin and Liao, 1999)

CAPÍTULO 3 – INTERAÇÃO SOLO-ESTRUTURA

3.1 MODELOS DE SOLO

A grande maioria dos modelos elaborados para a análise e dimensionamento de estacas sujeitas à esforços horizontais considera a estaca como um elemento linear caracterizado por sua rigidez à flexão EI (viga). A principal diferença entre os vários métodos se resume à estratégia para modelagem do solo que envolve a fundação.

Segundo Velloso e Lopes (2002), existem dois modelos principais: Modelo do meio contínuo e o Modelo de Winkler (Modelo de meio discreto).

Nos modelos do meio contínuo o solo é, em geral, considerado como um meio elástico contínuo. Com o advento de novas tecnologias e o desenvolvimento de computadores cada vez mais poderosos, tornou-se possível uma abordagem mais geral do problema, através da aplicação de formulações tridimensionais pelo Método dos Elementos Finitos, permitindo analisar o efeito de interação, por exemplo, em um grupo de estacas. Nestes modelos é ainda possível simular a interface solo-estaca e também admitir leis de comportamento elasto-plástico para o solo envolvente. Conforme Bowles (1997), esse tipo de modelo, além de requerer um enorme poder computacional, só se justifica caso acompanhado por ensaios sofisticados (tanto de campo quanto de laboratório) de forma a definir com exatidão o valor do módulo de elasticidade do solo. Para casos em que o valor do módulo de elasticidade do solo é de difícil determinação (e.g.: solos heterogêneos ou com muita estratificação).

Já nos Modelos de meio discreto o solo é modelado por uma série de molas independentes com comportamento elástico e linear (modelo de Winkler) ou elástico não-linear, traduzido pelas curvas 'p-y'. O modelo permite, de forma bastante eficiente, simular a estratificação do terreno, variando as características das curvas 'p-y' em profundidade. Porém, cabe observar que este modelo deve ser utilizado com cautela, dado que os parâmetros intervenientes não são grandezas fisicamente mensuráveis e a construção das curvas 'p-y' baseiam-se muito na experiência empírica adquirida em um número restrito de provas de carga. No entanto, dada a sua simplicidade e custo computacional, é largamente utilizado na prática e tem sido objeto de sucessivos refinamentos.

A figura 3.1 ilustra alguns dos modelos existentes para análise da interação solo-estaca..

Figura 3.1a) observa-se uma ilustração da consideração de estacas em um modelo de meio contínuo; b) um modelo discreto de molas com a utilização de curvas "p-y". (Gomes Correia e Santos, 1994)

Na realidade, a análise rigorosa do comportamento de estacas sujeitas a ações horizontais é bastante complexa, visto que envolve o estudo da interação entre o solo e a estaca, interação essa que depende de múltiplos fatores e requer uma análise tridimensional do problema considerando o comportamento não-linear dos materiais.

Conforme Poulos (1980), com a expansão de indústria de Óleo e Gás offshore, especialmente com aumento do uso de plataformas fixas apoiadas sobre fundações em estacas, encorajou-se o desenvolvimento de novos métodos de análise de estaqueamentos sujeitos especialmente a cargas laterais, sendo estas últimas bastante características dessa indústria (ondas, correntes, esforços de vento, etc). Atualmente, observa-se um motor semelhante no crescimento dos projetos de campos de geração de energia eólica offshore (Doherty e Gavin, 2012) cujas estruturas de suas turbinas são usualmente apoiadas sobre estacas ou tubulões isolados. Quando utilizadas fundações profundas, o mesmo pode ser ampliado para o setor de linhas de transmissão. Embora, nestes casos, as torres, geralmente, são assentes em grupos de estacas ou tubulões.

Desta forma, nos últimos anos, tem-se observado um progressivo desenvolvimento de métodos de cálculo cada vez mais complexos com base em modelos que melhor reproduzem a realidade. Porém no Brasil, infelizmente, não se verifica o mesmo acompanhamento no domínio da caracterização geotécnica do solo, especialmente no setor de linhas de transmissão. Assim, a confiabilidade nos parâmetros geotécnicos necessários para a modelagem numérica é reduzida.

Desta forma, conforme discutido por Bowles (1997) é questionável e ineficiente a adoção de modelos de cálculo muito complexos, pois exigem muitos parâmetros que não podem

ser obtidos com rigor através de uma caracterização geotécnica corrente. Em vez disso, talvez seja mais justificada a utilização de métodos aproximados e mais simples, tais como os que se baseiam no modelo de Winkler, que na prática a experiência tem demonstrado conduzir a resultados razoavelmente satisfatórios e favoráveis à segurança (Poulos, 1980).

3.1.1 MODELO DE WINKLER

O modelo do meio discreto baseado no conceito do coeficiente de reação foi proposto por Winkler (1867). Neste modelo o solo é idealizado como uma série de molas independentes com comportamento elástico e linear. A rigidez dessas molas é caracterizada assim por uma constante de proporcionalidade entre a tensão aplicada e o deslocamento do solo, constante essa designada por coeficiente de reação horizontal k_h . O k_h é assim definido como sendo a tensão necessária para provocar um deslocamento unitário e, portanto, com as dimensões de [FL⁻³].

O modelo de cálculo consiste em considerar a estaca como uma peça linear (viga) apoiada em um meio elástico. A influência do esforço normal na estaca é, em geral desprezada, mas esta pode ser considerada através de uma constante de proporcionalidade análoga denominada coeficiente de reação vertical k_v . A Equação 3-1 que rege o comportamento dessa "viga" é bem conhecida da Resistência de Materiais (Timoshenko 1951):

$$\frac{d^2 M}{dx^2} = q Equação 3-1$$

onde:

M = momento fletor; x = profundidade;

q = tensão aplicada.

Considerando válida hipótese de pequenos deslocamentos, obtém-se então a Equação 3-2:

$$\frac{d^2M}{dx^2} = -EI\frac{d^2y}{dx^2}$$
 Equação 3-2

onde:

y = deslocamento;

E = módulo de elasticidade da estaca;

I = momento de inércia da estaca.

Pela Hipótese de Winkler, a reação por unidade de comprimento resultante do solo sobre a viga é função do deslocamento daquele ponto da viga na direção correspondente. O solo é representado por um "coeficiente de reação" que pode ser constante ou variar com a profundidade.

Assim, para uma viga sobre base elástica submetida a carregamentos transversais, o Modelo de Winkler prevê que as tensões de contato (q) são proporcionais aos recalques (w), (Equação 3-3)

$$q = k_{\nu} W$$
 Equação 3-3

A figura 3.2 ilustra a substituição do solo por molas conforme a abordagem do Modelo de Winkler.

Figura 3.2 - (a) Modelo de Winkler (b) coeficiente de reação vertical. (Velloso e Lopes, 2010)

Para o caso de uma estaca submetida a carregamento horizontal, pode-se utilizar uma extensão da hipótese de Winkler formulada para o estudo de vigas de fundação, conforme mostrada na Figura 3.3.

Figura 3.3 - Modelo de Winkler estendido para estacas carregadas transversalmente (Velloso e Lopes, 2010).

Assim, as tensões de contato (p) são proporcionais aos deslocamentos horizontais (y) para o caso de carregamento horizontal, dessa forma tem-se então a Equação 3-4.

$$p = k_h y$$
 Equação 3-4

A equação diferencial que descreve o modelo de Winkler é dada pela Equação 3-5:

$$E_P \cdot I_P \cdot \frac{d^4 y}{d^4 z} + p \cdot d = 0 \qquad \text{Equação 3-5}$$

onde:

d = diâmetro da estaca.

Hetenyi (1946) desenvolveu soluções analíticas para várias hipóteses de carregamento e de condições de fronteira, mas somente para o caso particular de k constante em profundidade.

Para a consideração da variação de k, torna-se difícil a resolução analítica da Equação 3-5, pois esta se apresenta sob a forma geral de uma série infinita. Dessa maneira é mais conveniente a utilização de métodos numéricos, tal como a aplicação do Métodos dos Elementos Finitos

Os métodos de análise baseados no modelo de Winkler têm a grande vantagem da simplicidade, pelo fato de dependerem de um único parâmetro, que é o módulo de reação. Contudo, este parâmetro é difícil de avaliar visto não depender exclusivamente do solo envolvente, mas também das características da própria estaca e do estado de tensão considerado.

Algumas propostas foram estabelecidas para a avaliação do módulo de reação com base em uma variedade de ensaios, dentro dos quais se destacam: as sondagens com medidas de N_{SPT}, o ensaio de cone, o pressiômetro e as provas de cargas em placas. No entanto, a aplicação de diferentes correlações propostas por diferentes autores conduz, frequentemente a uma grande dispersão no valor do módulo de reação.

Uma das hipóteses simplificativas mais questionadas no modelo de Winkler é o caráter descontínuo do meio. Torna-se assim interessante comparar os resultados obtidos a partir do modelo de Winkler com os obtidos com base no modelo do meio elástico contínuo. Essa comparação entre as duas soluções possibilita relacionar o módulo de reação k com os parâmetros elásticos, módulo de elasticidade E_s e coeficiente de Poisson v_s , do solo. Essa metodologia permiti ultrapassar uma das dificuldades anteriormente apontadas, a dependência do valor de k das características da própria estaca. No entanto, a generalização destes tipos de correlações para ter em conta situações mais complexas, tais como a estratificação do terreno, ou a não linearidade do comportamento do solo pode oferecer algumas dificuldades já mencionadas anteriormente.

3.1.2 MODELO CONTÍNUO ELÁSTICO

O modelo contínuo elástico foi originalmente proposto por Poulos (1971a, 1972c), sendo baseado na teoria da elasticidade. Neste modelo, o solo é considerado como um meio contínuo, homogêneo e isotrópico, sendo representado por dois parâmetros elásticos, o módulo de elasticidade (E_s), e o coeficiente de Poisson (v). A Figura 3.4 apresenta a abordagem proposta pelo Modelo continuo elástico.

Figura 3.4 - Modelo contínuo elástico (Velloso e Lopes, 2010)

Na solução (Poulos, 1971a e 1972c), foram considerados dois casos: estaca com ponta livre e ponta engastada. No modelo, o desenvolvimento de tensões de cisalhamento horizontal não é levado em conta e é considerada a aderência entre o solo e a estaca na superfície da mesma.

A equação diferencial que governa o problema da estaca embutida em meio homogêneo é dada pela Equação 3-5 apresentada anteriormente.

Os deslocamentos do solo para os pontos ao longo da estaca são relacionados com as tensões do solo pela matriz de flexibilidade adimensional conforme é mostrado pela Equação 3-6. A matriz de flexibilidade do solo é o resultado da integração das expressões de Mindlin feita por Douglas e Davis (1964) sobre uma área retangular para o caso de deslocamento horizontal de um ponto no interior de uma massa semi-inifinita de solo sob carga horizontal pontual:

$$\{y\} = \frac{d}{E_s} [I_s] \cdot \{p\}$$
 Equação 3-6

onde:

 E_s = módulo de elasticidade do solo;

 I_s = matriz de flexibilidade adimensional do solo.

Deste modo, a tensão pode ser expressa de acordo com a Equação 3-7.

$$\{p\} = \frac{E_s}{d} [I_s]^{-1} \cdot \{y\}$$
 Equação 3-7

Substituindo-se então a Equação 3-7 na Equação 3-5 é obtida a Equação 3-8, sendo esta última a equação diferencial utilizada por Poulos (1971a, 1972c).

$$E_p \cdot I_p \cdot \frac{d^4 y}{dz^4} + E_s \cdot [I_s]^{-1} \cdot \{y\} = 0 \qquad \text{Equação 3-8}$$

A representação do solo como um meio contínuo elástico é bastante satisfatória do ponto de vista teórico, pois considera a natureza contínua do solo. Porém, o modelo elástico é uma aproximação idealizada do solo real, uma vez que para a hipótese de material elástico ser válida, os acréscimos de tensão e as deformações devem ser pequenas de tal forma que o estado de tensões esteja muito distante da ruptura. A maior dificuldade no emprego do modelo contínuo reside na dificuldade de se obter o módulo de elasticidade apropriado do solo em um problema prático. Ressalta-se que para tal é necessária uma campanha geotécnica que aborde tanto ensaios de campo (e.g.: cone, dilatômetro, pressiômetro, provas de carga) como ensaios de laboratório (e.g.: adensamento, cisalhamento direto, cisalhamento simples, triaxial). Salienta-se também a importância no processo de amostragem, pois de nada adianta a realização dos ensaios de laboratório caso as amostras obtidas não forem, de fato, indeformadas.

3.1.3 MODELO CONTÍNUO ELASTOPLÁSTICO

A solução exata do problema de uma estaca embutida em uma massa de solo com comportamento elastoplástico é de difícil obtenção na mecânica do contínuo; assim, o modelo elastoplástico requer uma solução por aproximação numérica. Uma das suas formas de implementação é utilizando o Método dos Elementos Finitos, por exemplo. No modelo elastoplástico, o comportamento do solo é modelado até a ruptura. No geral, em raras aplicações é considerado este tipo de modelo por apresentar um caráter pouco prático, uma vez que requer uma grande quantidade de manipulação de dados de alto custo de processamento, o que geralmente inviabiliza a sua aplicação em problemas usuais.

3.1.3.1 PARÂMETROS DO SOLO PARA MODELOS CONTÍNUOS NÃO-LINEARES (MODELOS DE PLASTICIDADE)

Para níveis intermediários à níveis elevados de deformação, o solo se comporta de maneira não-linear e acumula deformações irreversíveis frequentemente chamadas de

deformações permanentes (deformações plásticas). Para determinar se ocorreu ou não o acúmulo de deformação plástica, é preciso ter uma relação tensão-deformação na faixa elástica. A função de plastificação (f) normalmente é definida em termos das tensões e deformações e da lei de fluxo que define a relação na faixa plástica. Escoamento perfeitamente plástico é frequentemente associado à função de plastificação igualada à zero (f = 0). A Figura 3.5 apresenta alguns modelos de curvas tensão versus deformação.

Figura 3.5 (a) - Curva de Tensão-Deformação Bilinear (b) Curva Elástica e Perfeitamente Plástica (CIGRE SC B2 WG23, 2016)

No modelo de plasticidade incremental, o vetor básico de deformação é decomposto em uma parte elástica e uma parte plástica como mostrado na Equação 3-9:

$$\{d\boldsymbol{\varepsilon}\} = \{d\boldsymbol{\varepsilon}^e\} + \{d\boldsymbol{\varepsilon}^p\}$$
Equação 3-9

onde os índices "e" e "p" identificam as componentes elástica e plástica respectivamente.

Conforme a Equação 3-10, a componente plástica está associada a uma condição de lei de onde o tensor da taxa de deformação plástica está associado à derivada da função de plastificação (f) em relação ao vetor de deformação:

$$\{\dot{\varepsilon}^p\} = \lambda \frac{\partial f}{\partial \boldsymbol{\sigma}}$$
 Equação 3-10

onde λ é o multiplicador plástico. Para um comportamento puramente elástico, λ é zero enquanto que para comportamento plástico λ é positivo (>0), da forma exemplificada na Equação 3-11.

A Equação 3-12 e Equação 3-13 apresentam as situações de comportamento elástico e plástico respectivamente. A Equação 3-14 apresenta a relação matemática para a matriz elastoplástica conforme (Rakic et. al, 2008):

$$\lambda > 0; f = 0 \text{ ou } \frac{\partial f^T}{\partial \sigma} D^e \dot{\varepsilon} > 0$$
 Equação 3-11

$$\lambda = 0; f = 0 \text{ ou } \frac{\partial f^T}{\partial \sigma} D^e \dot{\varepsilon} < 0 \ (ecomportamento \ elástico)$$
 Equação 3-12

$$\lambda > 0; f = 0 e \frac{\partial f^{T}}{\partial \sigma} D^{e} \dot{\varepsilon} > 0$$
 (comportamento plástico) Equação 3-13

$$\{d\sigma\} = [C^{E}]\{d\epsilon\} - \frac{[C^{E}]\left\{\frac{\partial f}{\partial \sigma}\right\}\left\{\frac{\partial f}{\partial \sigma}\right\}^{T} [C^{E}]\{d\epsilon\}}{\left\{\frac{\partial f}{\partial \sigma}\right\}^{T} [C^{E}]\left\{\frac{\partial f}{\partial \sigma}\right\}^{T}} = [C^{EP}]\{d\epsilon\}$$
Equação 3-14

onde:

 $[C^E]$ = matriz de elasticidade;

 $[C^{EP}]$ = matriz plástica elástica (Rakic et. al, 2008).

3.1.3.1.1 MODELO DE DRUCKER-PRAGER (DRUCKER & PRAGER, 1952)

O critério de falha de Drucker-Prager é a primeira grande extensão da teoria da plasticidade dos materiais para problemas da mecânica dos solos e tem sido amplamente aplicado na literatura. Primariamente o modelo de falha é elástico-perfeitamente-plástico com uma superfície de plastificação que depende das componentes da pressão hidrostática e uma lei de fluxo associada. Na forma matemática tem-se a Equação 3-15:

$$f(J_1, J_2) = \sqrt{J_2} - \alpha J_1 - k = 0$$
 Equação 3-15

onde J_1 , J_2 são o primeiro e o segundo invariantes de tensão respectivamente, enquanto que α e k são parâmetros relacionados às propriedades de resistência do solo. Para condições de tensão axissimétricas que representam o estado de tensão triaxial, mostrado na Figura 3.6, tem-se α e k dados pela Equação 3-16 e Equação 3-17 respectivamente:

$$\alpha = \frac{2\sin\phi}{\sqrt{3}(3-\sin\phi)}$$
 Equação 3-16

$$k = \frac{6c \cos\phi}{\sqrt{3} (3 - \sin\phi)}$$
 Equação 3-17

onde:

c = a coesão;

 ϕ = ângulo de atrito interno.

Figura 3.6 – Modelo de Ducker Prager (Drucker & Prager, 1952)

A limitação do modelo de Drucker-Prager é que ele prevê uma deformação plástica incoerentemente grande (maior do que o observado experimentalmente) e o comportamento sob pressão hidrostática é mal representado, o que é importante em mecânica dos solos. Para evitar esse problema, Roscoe et al (1958) apresentaram um modelo de falha conhecido como Modelo Cam-Clay (Nader, 1993), onde é feita a distinção entre escoamento e falha através de linha de estado crítico (LEC) associado à dependência da superfície de plastificação em relação à deformação conforme mostrado na Figura 3.7a).

Figura 3.7(a) - Modelo Cam-Clay (b) Modelo Cam-Clay Modificado (Roscoe e Burland, 1968)

Posteriormente, Roscoe e Burland (1968) estendeu o modelo com uma forma elíptica da superfície de escoamento dependente da deformação que é conhecida como Modelo Cam-Clay Modificado (Nader, 1993). O modelo foi incialmente desenvolvido para condição de estado de tensão triaxial, mas posteriormente estendido para incluir a condição plana de tensões, mas ainda utilizando os parâmetros de resistência ao cisalhamento do solo. Na Figura 3.7b, p é a tensão efetiva média, q tensão desviadora (tensão de cisalhamento) e M é a inclinação da linha de estado crítico (LEC).

3.1.3.1.2 MODELO DE SUPERFÍCIE DE SUBCARGAS

Hashiguchi (1989) desenvolveu o Modelo de Superfície de Subcargas, mostrado na Figura 3.8), para resolver problemas práticos de engenharia onde a superfície expande/contrai dentro da superfície de plastificação, definida aqui como a superfície normal de plastificação. A superfície de subcarga sempre passa pelo ponto verdadeiro de tensão tanto nos processos de carregamento quanto de descarregamento e mantém sua similaridade com relação a superfície de escoamento normal. Os três parâmetros que definem o modelo são: variável de endurecimento/amolecimento isotrópico e dois incrementos de tensão. O primeiro incremento define a variável cinemática "a" e o segundo define o centro de similaridade "s" das superfícies de plastificação normal e de subcarga.

Figura 3.8 – Escoamento Normal Superficie de Subcargas (Hashiguchi et al, 2006)

Para um modelo não-linear de plasticidade solo, a matriz de rigidez não é constante e precisa ser atualizada a cada etapa de tempo, dependendo da condição do estado de tensão. Baseado na teoria de fluxo da plasticidade conforme apresentado na seção acima, o estado de tensão em cada elemento é calculado e verificado quanto ao escoamento do material. Se o elemento escoou então a lei de tensão-deformação é usada baseada na Equação 3-11 e a matriz de rigidez K é atualizada dentro da etapa de tempo, e as equações dos movimentos são resolvidas seguindo Bathe (2006). Se as forças de inércia não estão envolvidas, então a matriz

de rigidez é formada somente por condições de carregamento quase estáticas atualizadas a cada etapa de tempo incremental.

3.2 REAÇÃO DO SOLO

3.2.1 COEFICIENTE DE REAÇÃO VERTICAL

O coeficiente de reação vertical do solo (k_v) pode ser obtido por meio de ensaio de placa, tabelas de valores típicos e correlações ou pelo cálculo do recalque da fundação real. O coeficiente obtido pelo ensaio em uma placa rígida é dado pela relação entre a tensão em qualquer ponto da superfície de contato e o recalque produzido devido à aplicação de uma carga conforme mostra a Equação 3-18.

$$k_v = \frac{q}{w}$$
 Equação 3-18

O valor do k_V pode ser estimando a partir de valores típicos fornecidos na literatura, como o caso da

Tabela 3.1, fornecida por Terzaghi (1955) para uma placa quadrada de 30,5cmx30,5cm (1" x 1"). Um cuidado no uso desses valores é o de se fazer as devidas correções de dimensões e de forma, pois os valores de k_V também variam em função das características da estrutura (por exemplo: diâmetro e rigidez).

Tabela 3.1 – Valores de ks1 em MN/m3* para placas de 30,5cmx30,5cm, ou vigas com 30,5cm de largura, assentes sobre areia (Adaptado de Terzaghi, 1955)

	(1	0 /	/		
Grau de Compacidade da Areia	Fofa		Média		Compacta	
Areia seca ou úmida, valores limites para ks1	6,28	18,9	18,9	94,3	94,3	314
Areia seca ou úmida, valores sugeridos	12,57		40,8		157,1	
Areia submersa, valores sugeridos	7,85		25,1		94,3	
$1MN = 10^6 N^*$						

As correções para a dimensão e a forma da fundação podem ser feitas conforme a Equação 3-19 sugerida por Terzaghi (1955), para areias:

$$k_{S} = k_{S1} \left(\frac{B+1}{2B}\right)^{2}$$
Equação 3-19

onde:

k_s = valor de ks1 corrigido para a dimensão e forma da fundação;

 k_{s1} = valor do básico do coeficiente de reação vertical para uma placa quadrada de lado igual 30,5cm obtido da *Tabela 3.1*;

B = largura da viga.

3.2.2 COEFICIENTE DE REAÇÃO HORIZONTAL

O coeficiente de reação horizontal do solo (k_h) é expresso pela razão entre a tensão e o deslocamento horizontal associado, como mostra a Equação 3-20. Assim o coeficiente de reação horizontal tem a dimensão de força por unidade de volume [FL⁻³].

$$k_h = \frac{P_a}{y}$$
 Equação 3-20

O valor de k_h pode ser obtido por ensaios de cone, de pressiômetro ou através de provas de carga em placas, além das tabelas de valores típicos e correlações empíricas. A definição dos valores de k_h para o caso de estacas costuma ser um problema mais complexo do que para o caso de vigas assentes sobre base elástica porque pode-se admitir que a viga está em repouso sobre uma camada de solo uniforme. Já para o caso de estacas, a mesma pode atravessar diversas camadas de solo com naturezas distintas, sendo que em alguns solos, as características elásticas podem variar sensivelmente com a profundidade (Velloso e Lopes, 2010). Para o caso de solos com coeficiente de reação horizontal crescente com a profundidade, seu valor pode ser obtido pela Equação 3-21 ou Equação 3-22:

$$k_h = m_h z$$
 Equação 3-21
 $k_h = n_h \frac{Z}{B}$ Equação 3-22

onde:

 m_h = taxa de crescimento do coeficiente de reação horizontal com a profundidade [FL⁻⁴]; n_h = taxa de crescimento do coeficiente de reação horizontal com a profundidade incluindo a dimensão transversal [FL⁻³];

z = profundidade em solo;

B = diâmetro da seção transversal da estaca.

Terzaghi (1955) em seu trabalho sugeriu estimar o coeficiente de reação horizontal do solo por uma relação entre o módulo de elasticidade do solo e a dimensão transversal da estaca.

O autor propõe que deslocamentos a uma distância maior do que 3B da estaca não tem influência sobre o comportamento à flexão, obtendo a relação expressa na Equação 3-23.

$$k_h = 0,74 \times \frac{E}{B}$$
 Equação 3-23

Outros autores como Pyke e Beiake (1985), baseados em análises feitas pela Teoria da Elasticidade, sugerem tomar para o valor do módulo de elasticidade o valor secante, obtendose a expressão para k_h da Equação 3-24.

$$k_h = 2 \times \frac{E}{B}$$
 Equação 3-24

Poulos (1980) comparou duas soluções para o caso particular de estacas com topo engastado com comprimento igual a 25 vezes o diâmetro, inseridas em um meio com $v_s = 0,5$. Igualando os deslocamentos ao nível da cabeça da estaca para diferentes situações, Poulos (1980) obteve $k = 0,82E_s$. Aplicando essa relação, aquele autor concluiu, que quer para as estacas rígidas, quer para as estacas flexíveis, o modelo de Winkler conduz, em geral, a valores dos deslocamentos e dos momentos fletores ligeiramente mais elevados e, portanto, a favor da segurança.

Contudo, há que se levar em conta que o módulo de elasticidade depende das condições de drenagem e do nível de carregamento. De forma prática, considera-se que em solos argilosos saturados tem-se uma condição não drenada para carregamento rápido. Entretanto, em uma situação em que a carga é mantida, deve ocorrer drenagem no longo prazo. Mesmo assim, para um correto cálculo de deslocamentos deve-se levar em conta os parâmetros não drenados, pois os mesmos levam a deslocamentos maiores.

Outro ponto importante que deve ser ressaltado, é que em alguns trabalhos, o coeficiente de reação horizontal pode estar expresso incorporando a dimensão transversal da estaca e, nestes casos, tem a unidade de força por unidade de área $[FL^{-2}]$, como na Equação 3-25:

$$K_h = k_h \times B$$
 Equação 3-25

Nos subitens a seguir, são apresentados alguns valores típicos do coeficiente de reação horizontal para areias, argilas moles e argilas rijas.

3.2.2.1 AREIAS

Para areias, Terzaghi (1955), recomendou considerar o coeficiente de reação horizontal diretamente proporcional à profundidade, como apresentado na Figura 3.9. No entanto, a hipótese de que o coeficiente de reação horizontal cresce linearmente com a profundidade deve ser sempre verificada, e pode ser feito com o auxílio de sondagens com medidas de N_{SPT}. O perfil de solo, também pode apresentar variações da compacidade entre camadas e, neste caso, adota-se um coeficiente de reação horizontal diferente para cada camada.

Figura 3.9 – Modelo de coeficiente de reação horizontal do solo para areias, real x admitido (adaptado de Prakash e Sharma, 1990).

A Tabela 3.2 apresenta valores típicos da constante de reação horizontal (n_h) sugeridos por Terzaghi.

Tabela 3.2 – Valores típicos da constante de reação horizontal (n _h) em <i>MN/m</i> ³ * (Terzaghi, 1955).						
Densidade Relativa da Areia	Fofa		Média		Compacta	
Faixa de valores de A**	100	300	300	1000	1000	2000
Valores adotados de A**	200		600		1500	
Areia seca ou úmida, valores nh	2,20		6,60		17,59	
Areia submersa, valores de nh	1,257		4,40		10,68	
$1MN = 10^6 N^*$						

A é adimensional**

Terzaghi (1955) ainda sugere a Equação 3-26 que relaciona n_h ao peso específico da areia e seu comportamento sob tensão, à partir desta foram obtidos os valores da Tabela 3.2:

$$n_h = \frac{A \cdot \gamma}{1,35}$$
 Equação 3-26

onde:

A = indica a razão entre o módulo de elasticidade de solos não coesivos e a tensão aplicada;
γ = peso específico da areia.

3.2.2.2 ARGILAS MOLES

Para argilas moles normalmente adensadas é admitida a condição não drenada e a hipótese de que o coeficiente de reação horizontal cresce com a profundidade, a qual deve ser sempre verificada. Terzaghi (1955) não fornece valores típicos para argilas moles, e na literatura, existem algumas poucas sugestões de valores para solos argilosos moles. A Tabela 3.3 apresenta uma faixa de valores de k_h para argilas moles.

Tabela 3.3 – Valores típicos do coeficiente de reação horizontal para argilas moles (adaptado de Velloso e Lopes, 2010)

2010).				
Tipo de Solo	Valores de k _h (kN/m ³)*			
Solos orgânicos recentes (vasa, lado, turfa, etc)	10			
Argila orgânica, sedimentos recentes	60			
Argila siltosa mole, sedimentos consolidados (normalmente adensados)	80			
$1kN = 10^3 N^*$				

3.2.2.3 ARGILAS RIJAS

Para argilas muito sobreadensadas, onde k_h poderia ser considerado constante com a profundidade, na forma da Figura 3.10. Terzaghi (1955), em seus trabalhos, sugere valores típicos. Observa-se que os valores são os mesmos obtidos para o coeficiente de reação vertical obtido pelo ensaio com placas horizontais de 1"x1".

Figura 3.10 – Modelo de coeficiente de reação horizontal do solo para areias, real versus admitido (adaptado de Prakash e Sharma, 1990).

A Tabela 3.4 apresenta os valores de k_h propostos para argilas rijas muito sobreadensadas, ou seja, com razões de sobre-adensamento superiores a 4 (RSA>4).

Consistência da Argila	R	ija	Muito	o Rija	Dura
Valores de qu (kN/m2)	95,7	191,5	191,5	383	383
Faixa de ks1, placas quadradas	15	6,71	31	,4	62,8
Valores sugeridos, placas quadradas	23,6		47,1		94,3
$1MN = 10^6 N^*$					

Tabela 3.4 – Valores de ks1 em MN/m3 para placas de 30,5cmx30,5cm, ou vigas com 30,5cm de largura, assentes sobre argila pré-adensada (Adaptado de Terzaghi, 1955)

3.2.3 CURVAS P-Y

No modelo de Winkler admite-se que o solo exibe comportamento elástico e linear, ou seja, o módulo de reação não depende da tensão de contato.

Na realidade, a lei de variação do deslocamento y com a carga aplicada p (tensão por unidade de comprimento da estaca) não é linear. A atuação de cargas concentradas na cabeça da estaca, conduz frequentemente à plastificação do solo nas zonas próximas do topo, mesmo para níveis de solicitação não muito elevados. Deste modo, a relação 'p-y' é traduzida pela curva tipo indicada na Figura 3.11.

Figura 3.11 - Curva ""p-y" para modelagem do comportamento não-linear do solo

Os estudos experimentais e numéricos mostram que os deslocamentos da estaca são bastante sensíveis à rigidez do meio envolvente, enquanto que em termos de esforços o mesmo não acontece.

Deste modo, quando se pretende quantificar os deslocamentos ou a rigidez transversal do conjunto solo-estaca é necessário atender aos efeitos da não linearidade do sistema, que pode ser separado basicamente em 3 níveis (Adaptado de Santos, 1999):

- Comportamento não linear do solo envolvente, devido à plastificação e à resistência à tração nula (geralmente assumida para o solo);
- Comportamento não linear da interface solo-estaca, devido aos efeitos de separação e de atrito entre o solo e a estaca;

Comportamento não linear da própria estaca, devido a formação de rótulas plásticas.

A curva 'p-y' da Figura 3.11 reproduz os dois primeiros níveis de não linearidade enumerados por Santos (1999). Quanto ao comportamento não linear da própria estaca, este deverá ser estudado utilizando modelos apropriados, tendo em conta seu material constituinte.

Em suma, a consideração do comportamento não linear, quer do solo, quer da estaca, só é necessário nos casos em que a quantificação da rigidez transversal do sistema seja fator determinante no dimensionamento estrutural, devido a danos consideráveis que possam ser induzidos na superestrutura.

Nos casos correntes, o modelo de comportamento elástico e linear é geralmente suficiente para efeitos de dimensionamento estrutural das estacas de fundação.

O método das curvas p-y apresenta-se, portanto, como uma extensão do modelo de Winkler, com o diferencial de que a relação entre a reação desenvolvida pelo solo e o deslocamento da estaca é não linear. Um ponto importante no uso destas curvas, é que as esmas são definidas para cada camada de solo, conforme mostrado na Figura 3.12, permitindo uma mobilização diferente da resistência lateral do solo em função do deslocamento sofrido pela estaca e uma melhor representação do comportamento do solo em cada camada. De acordo com Cabral (2016), as curvas p-y são recomendadas pelas normas API RP 2A-WSD (2007) e ISO 19902 (2007), sendo normalmente definidas para solos coesivos e não coesivos, separadamente.

Figura 3.12 - Curvas p-y definidas para cada camada de solo. (Veloso e Lopes, 2002)

3.3 COMPORTAMENTO DINÂMICO DO SOLO

As estruturas e fundações de linhas de transmissão estão sujeitas primariamente a cargas estáticas e transitórias. Considerando que para o dimensionamento de fundações devem ser

atendidos os critérios de segurança e de serviço para cargas estáticas e estáticas equivalentes, a segurança quanto à capacidade geotécnica pode ser verificada através da aplicação de métodos igualmente estáticos e as condições de serviço não se alteram ao longo tempo. Já os carregamentos transitórios podem causar inversão da tensão no solo, bem como amplificação dinâmica. Além disso, a taxa de carregamento é um fator importante na compreensão do comportamento da fundação sob cargas transitórias. A capacidade da fundação quando submetida a carregamentos rápidos precisa ser avaliada fielmente para estabelecer o critério do estado limite e garantir que a confiabilidade da fundação possa ser estimada de maneira igualmente fiel.

Para avaliar o desempenho da fundação, é necessário compreender como o solo sob a fundação se comporta sob carregamento dinâmico e/ou cíclico. Isso implica em conhecer as características desses carregamentos incluindo amplitude, ciclos de carga e tipos de carregamento (cargas "unidirecionais" versus "bidirecionais"), taxa de carregamento, comportamento do solo (drenado ou não-drenado). Essas considerações, apesar da extrema importância para a construção de um modelo realístico de solo, necessitam da modelagem completa de seu comportamento não-linear quando submetido a carregamentos dinâmicos bem como a cargas cíclicas quase estáticas.

Há diferentes modelos de material que podem ser aplicados para a determinação da resposta da fundação, porém sua complexidade foge ao que é comumente abordado em cursos de graduação e sua implementação envolve um custo computacional bastante elevado (Bowles, 1997). Em razão do exposto, esses aspectos não serão considerados neste trabalho.

Adiante é fornecida uma visão breve e superficial da relação entre o comportamento do solo e seu nível de deformação, de forma a possibilitar uma avaliação, ainda que qualitativa, da aceitabilidade do modelo adotado.

A deformação do solo devido a carregamentos dinâmicos pode variar de muito pequenas a grandes amplitudes, com comportamento aproximadamente elástico a plástico de acordo com o nível de deformação. A Tabela 3.5 fornece algumas orientações sobre o comportamento do solo em diferentes níveis de deformação cisalhante (γ).

Tabela 5.5 Comportamento do Solo versus Niver de Deformação Cisamante (Dasgupta, 2000)					
Comportamento do Solo e Nível de Deformação Por Cisalhamento	Nível Baixo de Deformação ao Cisalhamento ($\Upsilon < 10^{-3}$)	Nível Intermediário de Deformação ao Cisalhamento $(10^{-3} < \Upsilon < 10^{-1})$	Nível Alto de Deformação ao Cisalhamento (' $\Upsilon > 10^{-1}$)		
Fenômeno	Propagação de Onda	Rachaduras, Assentamentos diferenciais	Liquefação		
Característica Mecânica	Elástico	Elástico Plástico	Falha		

Tabela 3.5 Comportamento do Solo versus Nível de Deformação Cisalhante (Dasgupta, 2006)

Uma atenção particular deve ser dada aos efeitos da amplitude de deformação, carregamento cíclico, e à redução do módulo de cisalhamento devido a carregamento cíclico. O amortecimento do solo não é considerado neste trabalho, porém este com sua amplitude de deformação também pode ser considerado, entretanto, a consideração apenas do amortecimento estrutural é favorável a segurança quando se trata de deslocamentos.

3.4 EFEITOS DA TAXA DE CARREGAMENTO NA RESISTÊNCIA DO SOLO E CAPACIDADE DE CARGA DA FUNDAÇÃO

Conforme Briaud and Garland (1985), solos apresentam comportamento fortemente dependente do tempo, o que pode estar relacionado ao efeito da taxa de deformação. O comportamento é altamente dependente dos tipos de solo (coesivo versus não-coesivo), estrutura do solo, e histórico de carregamento/tensão. O comportamento de solos coesivos é muito sensível à taxa de carregamento e é bem compreendido em relação ao carregamento dependente da taxa. Para esses tipos de solo, a resistência ao cisalhamento aumenta à medida que a taxa de deformação aumenta. Por outro lado, o comportamento de solos sem coesão é menos sensível à taxa de carregamento. Sob carregamento dinâmico, a influência pode ser bastante significativa para ambos os tipos de solos.

Para uma consideração efetiva do impacto da taxa de carregamento no comportamento de um elemento de fundação é imprescindível que sejam considerados seus efeitos na resistência ao cisalhamento do solo. Estão disponíveis na literatura diversos resultados de ensaios de escala real (Poulos, 1980) e lições aprendidas, entretanto, trata-se de uma questão de elevada complexidade que demanda elevado poder computacional para sua consideração no modelo.

Desta forma, apesar de representar uma extensão natural deste trabalho estes efeitos não são aqui considerados.

CAPÍTULO 4 – MODELOS DE ANÁLISE DINÂMICA

4.1 CONSIERAÇÕES INICIAIS

Esta seção apresenta uma breve visão geral dos modelos de análise que podem ser usados na determinação da resposta do sistema estrutura-fundação sob cargas dinâmicas. Duas técnicas específicas de modelagem numérica são apresentadas para se obter a resposta dinâmica do sistema estrutura-fundação considerando a interação solo-estrutura. Estas são: (1) Modelos de Parâmetros Discretos e (2) Modelo de Elementos Finitos. Ambas as abordagens de domínio de tempo e domínio de frequência podem ser usadas com essas técnicas de modelagem. Além disso, as características do solo podem ser lineares ou não-lineares.

Em análise dinâmica, somente as primeiras frequências e modos de vibração que contribuem significativamente para a resposta global do sistema estrutura-fundação quando o sistema é excitado. Frequentemente, um modelo simples pode ser considerado primeiramente para obter uma estimativa dos deslocamentos das grandezas relacionadas a resposta (deformações, tensões etc.) através das equações de compatibilidade e da relação constitutiva. O objetivo é fornecer orientações sobre as etapas necessárias para determinar a resposta do sistema, considerando duas aplicações de carga: (a) carga agindo no nível da superestrutura (efeitos da carga de rajada de vento que frequentemente são aleatórios, cargas desequilibradas devidas ao rompimento do condutor que são transitórias por natureza, etc.) ou (b) excitação de terremoto (aceleração) agindo no nível do solo ou no nível do maciço rochoso. Finalmente, esta seção também inclui uma revisão da literatura sobre a resposta da fundação de linhas aéreas de transmissão devido a rajadas de vento, condutor rompido e cargas de terremoto.

4.2 FUNÇÃO CARREGAMENTO

As estruturas e fundações de linhas aéreas de transmissão são submetidas principalmente a três tipos de cargas dinâmicas. São estas: (1) rajada de vento, essencialmente aleatória por natureza (estocástica); (2) movimento do terremoto, tipo transiente; e (3) carga de rompimento de condutor, tipo de carregamento impulsivo, também transitória por natureza. Cada uma dessas cargas pode introduzir forças inerciais, de amortecimento e de rigidez significativas no sistema estrutura-fundação-solo, dependendo do nível de amplitude, da frequência e da duração do histórico temporal de carregamento. O sistema estrutura-fundação pode experimentar condições de ressonância onde as respostas (deformação) podem tornar-se significativamente grandes e causar um desempenho inaceitável. A condição de ressonância é definida como a força aplicada variando a uma taxa que corresponde à mesma frequência do sistema de estrutura-fundação.

4.3 MODELO SIMPLES DE UM GRAU DE LIBERDADE (APOIO ENGASTADO)

Assumindo que a base da torre é rígida, um oscilador de um grau de liberdade UGDL pode representar um complexo sistema de fundação de estrutura de linha de transmissão aérea.

4.3.1 CARGAS NO NÍVEL DA ESTRUTURA

Considera-se que o sistema estrutura-fundação é excitado sob dois tipos de condições de carga. A Figura 4.1(a) apresenta o caso em que a carga é aplicada no nível da superestrutura, como o histórico temporal da função de forçamento de vento e a Figura 4.1(b) apresenta um modelo UGDL para o sistema de estrutura-fundação.

Figura 4.1 – (a) Função de Forçante Aplicada no Topo da Estrutura (b) Modelo do Sistema de Um Grau de Liberdade (UGDL) (CIGRE SC B2 WG23, 2016)

4.3.2 CARGAS NO NÍVEL DA FUNDAÇÃO (MOVIMENTAÇÃO DO SOLO/CARGA DE TERREMOTO)

A Figura 4.2(a) apresenta o caso em que a torre está sujeita à movimentação do solo e a Figura 4.2(b) apresenta um modelo UGDL do sistema estrutura-fundação sujeito a essa excitação

Figura 4.2 – (a) Função Forçante Aplicada no Nível do Solo (b) Modelo de Um Grau de Liberdade (UGDL) (CIGRE SC B2 WG23, 2016)

4.4 CÁLCULO DA RESPOSTA PARA O MODELO SIMPLES DE UM GRAU DE LIBERDADE

Nas figuras acima, todo o sistema estrutura-fundação é modelado como um sistema massa-mola e um amortecedor, representando um simples oscilador de base fixa (sistema de UGDL) sujeito a uma função de carregamento geral. Conforme Brasil e Silva (2015), as equações de movimento para os dois tipos de sistema acima podem ser definidas conformas a Equação 4-1 e a Equação 4-2 respectivamente.

$$m \ddot{x} + +c \dot{x} + k x = F(t) \rightarrow \text{carga de vento}$$
 Equação 4-1

$$m\ddot{x}y + c\dot{y} + ky = -m\ddot{u_g}(t) \rightarrow carga de terremoto$$
 Equação 4-2

Na Equação 4-1, x é o deslocamento absoluto sob o histórico de tempo de carga de vento. Para a Equação 4-2, y representa o deslocamento relativo em relação à base sob movimento do terremoto ($\ddot{u}_g(t)$). Nessas equações, k é a rigidez da mola, c é o parâmetro de amortecimento (constante de amortecimento viscoso), e m é a massa, - $\ddot{u}_g(t)$ é a aceleração do solo e F(t) é a função de carregamento do vento. A função forçante é senoidal e o fator de amplificação dinâmica (DAF) é definido como na Equação 4-3.
$$DAF = \frac{X_{din}}{X_{est}}$$
 Equação 4-3

onde X_{est} é o deslocamento sob força estática equivalente e é definido pela Equação 4-4.

$$X_{est} = \frac{F_0}{k}$$
 Equação 4-4

De acordo com Brasil e Silva (2015) a frequência natural do sistema ω_0 é definida na forma da Equação 4-5.

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 Equação 4-5

A amplificação dinâmica da resposta do sistema dependerá da relação entre a frequência excitante (ω_e) e a frequência natural do sistema de fundação da estrutura (ω_0).

Em geral, a análise da resposta pode ser realizada tanto no domínio do tempo quanto no domínio da frequência. A Figura 4.3 mostra uma função de carregamento geral no domínio do tempo, que pode ser idealizada como a força do vento no nível do condutor.

Figura 4.3 - Função Geral de Carregamento (Histórico Temporal) (CIGRE SC B2 WG23, 2016)

Na análise no domínio do tempo, as equações de movimento são resolvidas por um algoritmo de integração passo a passo (Bathe, 2004). No domínio da frequência, os cálculos são feitos em frequências discretas. Os harmônicos de amplitude são primeiramente obtidos da função de entrada (histórico de tempo de força) para um número de frequências discretas de

interesse pelo Método de Transformada Rápida de Fourier (FFT). As respostas (deslocamentos, tensões etc.) são obtidas nestas frequências discretas, calculando primeiro o produto da função de transferência do sistema e a função de entrada (harmônicos de amplitude).

Uma vez que as respostas são obtidas em frequências discretas, o histórico temporal de resposta é obtido pelo Método de Transformada Rápida Inversa de Fourier (IFFT).

A análise no domínio do tempo pode lidar com comportamentos lineares e não lineares do solo explicitamente. Entretanto, a abordagem do domínio da frequência permite apenas o comportamento linear ou do solo modelado como "linear equivalente" porque usa o método de superposição dos harmônicos de amplitude para determinar a amplitude total da quantidade de resposta. A não-linearidade do solo pode ser tratada de maneira limitada no domínio da frequência usando uma técnica de linearização equivalente (Seed e Idriss, 1970, Haldar et al.,1977) onde os valores de módulo de cisalhamento e de amortecimento do solo dependentes da deformação são usados durante o processo de cálculo. A Figura 4.4 apresenta um fluxograma geral descrevendo o procedimento da solução, dependendo do tipo de problema.

Figura 4.4 - Fluxograma Geral para Análise de Resposta Dinâmica (CIGRE SC B2 WG23, 2016)

A seção a seguir apresenta uma visão geral de várias técnicas que são comumente usadas no cálculo da resposta para os tipos de carregamento descritos na Seção 2.2. Estas são: (1) domínio do tempo; (2) domínio da frequência; (3) método espectral; e (4) método do espectro de resposta.

4.4.1 ABORDAGEM PELO DOMÍNIO DO TEMPO

As equações de movimento em 4.4 podem ser resolvidas usando uma abordagem de integração passo-a-passo em que velocidade e deslocamento no passo de tempo atual estão relacionados com o passo de tempo anterior na forma da Equação 4-6 e da Equação 4-7 que seguem.

$$\dot{x}_{t+\delta t} = \dot{x}_t + \delta t \left[(1-\gamma) \ddot{x}_t + \beta \ddot{x}_{t+\delta t} \right]$$
Equação 4-6

$$x_{t+\delta t} = x_t + \delta t \, \dot{x}_t + \, \delta t^2 \left[(1/2 - \beta) \ddot{x}_t + \beta \ddot{x}_{t+\delta t} \right]$$
Equação 4-7

O passo de tempo δt deve ser escolhido cuidadosamente para evitar problemas de instabilidade numérica. Normalmente, o esquema de integração implícito é usado para função de forçamento de longa duração ($\beta \neq 0$) como a carga de rajada de vento, que pode durar algumas horas, enquanto o esquema de integração explícito ($\beta = 0$) pode ser usado para uma carga transitória de curta duração, como a análise da resposta do rompimento de condutor.

4.4.2 ABORDAGEM PELO DOMÍNIO DA FREQUÊNCIA

Na análise no domínio da frequência, a Equação 4-1 e a Equação 4-2, equações do movimento, são transformadas no domínio da frequência usando a técnica da Transformada Rápida de Fourier (FFT) como na Equação 4-8.

$$X(i\omega) = H(i\omega) F(i\omega)$$
 Equação 4-8

Para um sistema de um grau de liberdade, a função de transferência (representação matemática da relação entre a entrada e a saída de um sistema) é dada pela Equação 4-9:

$$H(i\omega) = \frac{1}{K} \frac{1}{\left[1 - \left(\frac{\omega_0}{\omega_n}\right)^2 + i\eta\right]}$$
Equação 4-9

onde:

$$\eta = 2\varepsilon \frac{\omega_0}{\omega_n};$$

 $X(i\omega)$ = função de resposta no domínio da frequência; $H(i\omega)$ = função de transferência do sistema de UGDL; $F(i\omega)$ = função forçante no domínio da frequência;

- K = parâmetro de rigidez;
- ω_0 = frequência dominante da função forçante;
- ω_n = frequência natural do sistema de fundação-estrutura de UGDL;
- ε = taxa crítica de amortecimento;
- η = amortecimento viscoso; e,
- i = parte imaginária (representando deslocamento de fase).

Primeiramente, o histórico temporal da função forçante é convertido para o domínio da frequência utilizando a técnica da Transformada Rápida de Fourier (FFT). Isso fornece gráficos de amplitude e fase do sinal (histórico temporal de forçamento) em frequências discretas. A resposta é calculada nestas frequências discretas seguindo a Equação 4-8. Uma vez que a resposta seja calculada em várias frequências discretas, a técnica da Transformada Rápida de Fourier Inversa (IFFT) é aplicada para obter o histórico temporal da resposta. O método é bem adequado para o modelo de solo linear/linear equivalente e tem sido amplamente utilizado para calcular a resposta da fundação para muitas estruturas de engenharia civil, tais como estruturas de contenção, pilares de pontes, edifícios, (Lysmer et. al. 1978, Seed e Idriss, 1970) e em sistemas estrutura-fundação offshore (Haldar, 1977).

4.4.3 ABORDAGEM ESPECTRAL (PROCESSO ESTOCÁSTICO PARA O CARREGAMENTO)

Para determinar as respostas sob carga aleatória de vento, a resposta é separada em duas partes: (1) a resposta correspondente à força média \overline{F} ; e (2) a resposta correspondente à parte flutuante $\widetilde{F(t)}$ conforme mostrado na Seção 2.2.3 e na Equação 4-10 abaixo.

$$X(t) = \bar{X} + x(t)'$$
 Equação 4-10

A resposta média \overline{X} está relacionada à força média de vento \overline{F} na forma da Equação 4-11:

$$\overline{F} = \mathbf{k} \, \overline{X}$$
 Equação 4-11

A densidade espectral da resposta é dada conforme a Equação 4-12 (Holmes, 2007):

$$S_{x}(n) = \frac{1}{K^{2}} [H_{n}]^{2} S_{F}(n)$$
 Equação 4-12

onde $[H_n]$ é a função de transferência mecânica de um sistema de UGDL (nesse caso um modelo de UGDL para o Sistema estrutura-fundação) e $S_x(n)$ é a densidade espectral de potência da resposta e $S_F(n)$ é a densidade espectral de potência da carga aerodinâmica de vento. A relação expandida considerando o espectro da velocidade do vento é mostrada na Equação 4-13 abaixo conforme Davenport (1972):

$$S_{x}(n) = \frac{1}{K^{2}} [H_{n}]^{2} S_{F}(n) = \frac{1}{K^{2}} [H_{n}]^{2} \frac{4\bar{F}^{2}}{\bar{V}^{2}} S_{V}(n)$$
 Equação 4-13

onde:

 $S_x(n)$ = Densidade espectral de potência da resposta devido ao espectro de velocidades do vento, $S_V(n)$ (ver Figura 2.10).

A resposta quadrática média (RMS) é dada na Equação 4-14, que é normalmente usada para calcular o fator de resposta da rajada:

$$\sigma_x^2 = \int_0^\infty S_x (n)^2 dn \qquad \qquad \text{Equação 4-14}$$

Se o modelo da torre é linear, então a densidade espectral da força no nível da fundação pode ser amplificada com base na função de transferência do sistema estrutural, conforme Rendina (1980).

4.4.4 ABORDAGEM DO ESPECTRO DE RESPOSTA

A Equação 4-2 é transformada na forma da Equação 4-15:

$$\ddot{x} + +2\eta\omega \dot{x} + \omega^2 x = -\ddot{u_g}(t) \rightarrow \text{movimentação de terremoto}$$
 Equação 4-15

Para um dado movimento do solo, conforme mostrado na Equação 4-15, o histórico temporal de resposta é completamente dependente da frequência natural do sistema e da taxa de amortecimento. O espectro de resposta é criado para uma determinada intensidade de terremoto e para uma razão específica de amortecimento, resolvendo a equação de movimento acima para níveis discretos de frequência. Uma vez que o espectro de deslocamento é construído para uma dada intensidade sísmica com taxa de amortecimento específica, o espectro de pseudo-aceleração pode ser construído multiplicando-se o valor do espectro de deslocamento relativo a uma frequência específica de carregamento por ω^2 . O espectro de resposta de deslocamento fornece uma ferramenta para estimar o deslocamento do sistema torre-fundação

com base em um modelo de UGDL para qualquer frequência dada. O gráfico de pseudoaceleração fornece a estimativa do cisalhamento na base da torre no nível do solo.

4.5 MODELO DE INTERAÇÃO SOLO-ESTRUTURA

A análise da resposta dinâmica considerando a interação solo-estrutura é feita principalmente baseada em dois tipos de modelos numéricos. Estes são: (1) modelo de parâmetros discretos; e, (2) modelo de elementos finitos. Ambos os modelos podem lidar com o comportamento de tensão-deformação linear e não-linear de solos. A solução para a resposta pode ser obtida no domínio do tempo ou no domínio da frequência. O domínio da frequência só é aplicável se o comportamento do solo for considerado linear ou "linear equivalente". Portanto, para comportamento não-linear do solo, a solução no domínio do tempo é a única opção viável para calcular a resposta.

4.5.1 MODELO DO PARÂMETRO DISCRETO

Um modelo de parâmetros discretos para um sistema torre-fundação de uma estrutura de linhas aéreas de transmissão exigirá que as massas sejam discretizadas ao longo da altura da torre com a rigidez estrutural apropriada atribuída entre os vários segmentos. O modelo do solo é normalmente idealizado com três rigidezes de mola dependentes da frequência (funções complexas) no nível da base da torre. Estas são: (1) mola horizontal; (2) mola vertical; e, (3) mola rotativa. A Figura 4.5 apresenta um sistema de um grau de liberdade do modelo torrefundação onde a torre é representada por um elemento de viga com massa discretizada no topo e rigidez apropriada, bem como com rigidez de fundação representada por dois graus adicionais de liberdade: (1) translacional, k_u ; e (2) rotacional, k_{θ} .

Figura 4.5 – Modelo de Interação Solo-Estrutura (a) Estrutura de Mastro Único (Poste) (Tileliglu, Stewart and Nigbor, 2011) (b) Estrutura da Torre (Xu e Spyrakos, 1996)

A estrutura é modelada com a rigidez de mola, k, e um amortecimento viscoso, c, e pode representar uma estrutura de mastro único suportada por uma fundação engastada (estaca escavada ou tubulão). A altura da estrutura é h, e ela é permitida transladar e rodar conforme mostrado na Figura 4.5(a). A Figura 4.5(b) descreve um modelo para uma torre autoportante onde o sistema de apoio de mola e amortecedor da esquerda representa o comportamento da fundação ao arrancamento enquanto que o sistema de apoio de mola e amortecedor mostrado na direita o comportamento da fundação à compressão. Dependendo da direcionalidade da força, a rigidez da mola e as propriedades do amortecedor podem ser alteradas. A rigidez da mola dependente da frequência tem duas partes: (a) a parte real; e, (b) uma parte imaginária. Isso será discutido à frente, na Seção 4.5.1.2, quando for tratado o Método da Impedância da Fundação. É de notar que nestas figuras apenas são mostradas as propriedades de mola desacopladas. Para efeitos de acoplamento de um sistema de fundação típico, como grupo único de estacas ver Novak (1974).

Xu e Spyrakos (1996) apresentaram uma metodologia onde o arrancamento é considerado na análise de uma estrutura tipo de torre considerando a interação solo-estrutura e arrancamento parcial da fundação da estrutura da torre. A estrutura da torre foi modelada como um elemento de viga com a fundação modelada como duas molas e amortecedores separados por uma distância fixa para simular o comportamento arrancamento-compressão da fundação. Equações não-lineares de movimentos foram obtidas com a ajuda da Equação de Lagrange. Um estudo de sensibilidade foi realizado para estudar os efeitos da rigidez do solo, razão entre altura e largura da torre, e separação parcial da fundação do solo. A razão entre altura e largura afeta significativamente a resposta sísmica especialmente em torres apoiadas em fundações em rocha. O estudo concluiu que o arrancamento pode não ser benéfico durante a resposta sísmica e seu efeito pode ser significativo durante um forte movimento sísmico.

4.5.1.1 FREQUÊNCIA COMBINADA DA FUNDAÇÃO E DA ESTRUTURA (VELETSOS E MEEK, 1974, KRAMER 2004)

A Equação 4-16 e a Equação 4-17 a seguir fornecem uma metodologia para calcular a frequência natural do sistema torre-fundação em uma forma aproximada:

$$\frac{T_{sis}}{T_s} = \sqrt{1 + \frac{k_s}{k_{sh}} (1 + \frac{k_{sh}}{k_{s\theta}} h^2)}$$
Equação 4-16

$$\frac{\zeta_{sys}}{\omega_{sis}^2} = \frac{\zeta_{sh}}{\omega_{sh}^2} + \frac{\zeta_{s\theta}}{\omega_{s\theta}^2} + \frac{\zeta_s}{\omega_s^2}$$
 Equação 4-17

onde T_{sis} é o período do sistema torre-fundação, T_s é o período da estrutura considerando que a base é rígida, ω_s é a frequência da estrutura, ζ_{sys} é o amortecimento do sistema, ζ_{solo} é o amortecimento do solo, ζ_{es} é o amortecimento estrutural, ζ_{sh} é o amortecimento horizontal do solo, $\zeta_{s\theta}$ é a taxa de amortecimento do solo, no modo de balanço k_s é a rigidez da torre, e k_{sh} e $k_{s\theta}$ são as rigidezes translacional e da fundação, respectivamente.

As frequências individuais podem ser determinadas como dado na Equação 4-18.

$$\omega_s^2 = \frac{k_s}{m}; \ \omega_{s\theta}^2 = \frac{k_{s\theta}}{mh^2}; e \ \omega_{sh}^2 = \frac{k_{sh}}{m}$$
 Equação 4-18

4.5.1.2 MÉTODO DA IMPEDÂNCIA DA FUNDAÇÃO

A solução numérica das equações acopladas de movimento pode ser resolvida no domínio do tempo ou no domínio da frequência seguindo o fluxograma mostrado na Figura 4.4. Se a fundação é considerada infinitamente rígida, o carregamento dinâmico transmitido decorre apenas dos deslocamentos dos solos ao redor. Muitos pesquisadores têm trabalhado nessa área para fornecer uma solução para as impedâncias da fundação, que representam a rigidez dinâmica e o amortecimento fornecido pelo solo em qualquer direção dos movimentos. A função de impedância é baseada em uma teoria do meio-espaço elástico, proposta originalmente por Bycroft (1956) e generalizada posteriormente por Lysmer (1965). A função de impedância é definida como a razão entre a força dinâmica exercida (ou momento) em relação ao deslocamento (ou rotação) resultante do estado estacionário. A força e o deslocamento estão normalmente fora de fase e são, portanto, descritos por uma função de valor complexo dependente da frequência, ω . A parte real representa a rigidez e a parte imaginária fornece o amortecimento do solo (Gazetas, 1991). As funções de impedância são descritas em termos de frequências adimensionais na forma da Equação 4-19:

$$K_{d}(\omega) = K_{s} \left[\alpha(a_{0}) + ia_{0} \beta(a_{0}) \right]$$
 Equação 4-19

onde:

 $a_0 = \frac{\omega r}{v_s}$ é um parametro de frequência adimensional;

r = raio equivalente da fundação;

 V_s = velocidade da onda de cisalhamento;

 K_s = rigidez estática em relação a determinados graus de liberdade (translação, vertical e rotação que é apresentado na próxima seção.

A impedância, $K_d(\omega)$ é um número complexo em que a parte real representa a rigidez e a inércia do solo, enquanto a parte imaginária reflete os dois tipos de amortecimento, radiação e amortecimento do material. O amortecimento de radiação depende do nível de deformação devido à dependência do módulo de cisalhamento mobilizado $G(\gamma)$. O amortecimento material também depende do nível de deformação, como mostrado no ensaio de coluna ressonante e em ensaios triaxiais cíclicos em solos granulares e coesos por Seed e Idriss (1970). O coeficiente dinâmico também depende do nível de deformação de cisalhamento no solo. Gazetas (1991) publicou a variação na rigidez e no coeficiente de amortecimento de radiação em relação ao módulo de cisalhamento para várias geometrias da fundação e condições do solo.

4.5.1.3 FUNDAÇÃO EM ESTACA

Novak (1974) desenvolveu as funções de impedância para uma única estaca e para um grupo de estacas. As funções foram desenvolvidas baseadas na teoria da elasticidade e forneceram uma solução de forma fechada para a rigidez e o amortecimento da estaca. Considerações foram feitas a todos os componentes do movimento em um plano vertical, i.e. movimentos horizontal, vertical, e balanço na cabeça das estacas no desenvolvimento das funções de impedância e são apresentados na Figura 4.6.

O documento também fornece as funções considerando o efeito de grupo. A função $F_{i,1}$ define os coeficientes de rigidez com graus de liberdade translacional e rotacional enquanto $F_{i,2}$ define os coeficientes de amortecimento para os mesmos graus de liberdade. Eles estão relacionados à reação horizontal da cabeça da estaca e aos momentos finais através do movimento de translação e do movimento rotacional. Detalhes são fornecidos no trabalho de Novak.

Figura 4.6 – Funções de Impedância Para Estacas com Ponta Rotulada e Cabeça Engastada (Novak, 1974)

4.6 MÉTODO DOS ELEMENTOS FINITOS (FEM)4.6.1 ANÁLISE LINEAR E NÃO-LINEAR

A Figura 4.7 apresenta um modelo de elementos finitos para o sistema torre-fundação.

Figura 4.7 – Modelo de Interação Solo-Estrutura – Método dos Elementos Finitos (FEM) (modificado de Arun e Muthukkumaram, 2015)

O carregamento pode ser aplicado no nível da superestrutura para simular o histórico de tempo da carga de vento ou no nível do leito rochoso para simular o movimento do solo.

Elementos estruturais incluindo as estacas podem ser elementos de viga com propriedades lineares e/ou não-lineares enquanto o meio solo-fundação pode ser modelado com modelo linear equivalente (rigidez e amortecimento do solo dependentes da deformação, ou as propriedades constitutivas elastoplásticas completas).

As equações dinâmicas acopladas de movimento para uma estrutura discretizada e o sistema de fundação podem ser escritas da seguinte forma:

$$[M]{\ddot{x}} + [C]{\dot{x}} + [K]{x} = {F(t)}$$
 Equação 4-20

onde [M] = matriz de massa combinada para sistema solo-estrutura com elemento diagonal que representa a aproximação do parâmetro de massa do modelo de massa, [C] = matriz combinada de amortecimento para o sistema solo estrutura, [K] = matriz de rigidez do Sistema e {F (t)} = vetor de carga representando os elementos de carga atuando no nível da superestrutura, como carga de vento, cargas de rompimento de condutor, etc. Para o movimento do solo devido a terremoto, a equação acima pode ser ajustada conforme a Equação 4-2 para um Sistema de um grau de liberdade. As equações do movimento completas podem ser resolvidas no domínio do tempo para fornecer o histórico de resposta (deslocamentos, tensões etc.).

4.6.2 AMORTECIMENTO ESTRUTURAL

O amortecimento estrutural pode ser definido como o processo de dissipação de energia proveniente do movimento vibratório (CLOUGH, 1993). A avaliação desse efeito não é simples, pois depende das propriedades dos materiais componentes da estrutura e de qualquer objeto acoplado à mesma, como cabos, escadas, elevadores etc.

Pela dificuldade e complexidade da avaliação real desse efeito, ele é usualmente considerado através da matriz de amortecimento de Rayleigh (Rechtman, 2018), apresentada na Equação 4-21, que considera contribuições da matriz de rigidez (β) e da matriz de massa (α).

$$[C] = \alpha[M] + \beta[K]$$
Equação 4-21

Nesse método, também chamado de amortecimento α e β , a matriz de amortecimento [C] é calculada utilizando-se essas constantes que multiplicam a matriz de massa [M] e a matriz de rigidez [K] conforme a Equação 4-21.

Os valores de α e β geralmente não são conhecidos diretamente, mas são calculados a partir da taxa de amortecimento modal (ξ_i). ξ_i que é a razão entre o amortecimento verdadeiro

e o amortecimento crítico para um modo de vibração específico, i. Se ω_i é a frequência angular natural do modo i, α e β satisfazem a relação da Equação 4-22 abaixo.

$$\xi_i = \frac{\alpha}{2\omega_i} + \frac{\beta\omega_i}{2}$$
 Equação 4-22

De forma a especificar tanto α quanto β para uma dada taxa de amortecimento ξ , comumente assume-se que a soma dos termos α e β é aproximadamente constante ao longo de uma faixa de frequência, conforme mostrado na Figura 4.8.

Figura 4.8 - Amortecimento de Rayleigh

Portanto, dado ξ e uma faixa de frequência ω_1 a ω_2 , pode-se obter α da Equação 4-23 e β da Equação 4-24.

$$\alpha = 2\xi \frac{\omega_1 \omega_2}{\omega_1 + \omega_2}$$
Equação 4-23
$$\beta = \frac{2\xi}{\omega_1 + \omega_2}$$
Equação 4-24

4.6.3 MODELO DE SOLO NÃO-LINEAR (MODELO DE PLASTICIDADE DO SOLO)

A equação discretizada de movimento instantânea $t + \delta t$ é apresentada na Equação 4-25.

$$[M]{\dot{x}}^{t+\delta t} + [C]{\dot{x}}^{t+\delta t} + [K]{x}^{t+\delta t} = {F(t)}^{t+\delta t}$$
Equação 4-25

Para a análise linear, as equações de movimento são resolvidas para cada etapa de tempo sem atualizar a matriz de rigidez. Entretanto, para um modelo de plasticidade não-linear do solo, a matriz de rigidez não é constante e necessita ser atualizada à cada etapa de tempo, dependendo da condição do estado de tensão. Baseado na teoria do fluxo da plasticidade, o estado de tensão em cada elemento é calculado e verificado quanto à plastificação do solo, seguindo uma função de plastificação. Se o elemento plastificou então define-se a lei de tensãodeformação e a matriz K é atualizada dentro do intervalo de tempo e as equações de movimentos são resolvidas incrementalmente conforme Bathe (2006).

Maheswari e Truman (2007), apresentaram um modelo de elementos finitos para a interação solo-estaca-estrutura considerando cargas dinâmicas. Na análise por elementos finitos, dois subsistemas são utilizados: (1) sistema estrutural; e; (2) Sistema solo-estaca. A Figura 4.9 apresenta o sistema solo-estaca-estrutura que inclui um Sistema de uma estaca e um Sistema de um grupo de estacas 2x2. A Figura 4.10 apresenta o arranjo detalhado de malha de elementos finitos do subsistema solo-estaca. Na análise dinâmica, a não linearidade do solo foi considerada utilizando um modelo avançado de plasticidade. A resposta sísmica é desenvolvida considerando o problema como um problema acoplado e a análise dinâmica não linear incremental é usada para resolver o problema. A análise de resposta apresentada na Figura 4.11 mostra que a resposta da cabeça da estaca aumenta devido à não-linearidade do solo. Observação semelhante também é feita na Figura 4.12 quando a resposta estrutural é apresentada em termos de um Espectro de Fourier (análise no domínio da frequência).

Figura 4.9 – Sistema Solo-Estaca-Estrutura Considerado na Análise (a) Sistema de Uma Estaca (b) um sistema de grupo de estaca 2x2 (Maheswari e Truman, 2004)

Figura 4.10 – Modelo FEM 3D Quarter Usado para o Subsistema da Fundação (a) Uma estaca (b) Grupo de Estacas 2x2 (Maheswari e Truman, 2007)

Figura 4.11 – Histórico Temporal Linear e Não-Linear da Resposta da Cabeça da Estaca (Maheswari e Truman, 2004)

Figura 4.12 – Espectros Lineares e Não-lineares de Fourier (Maheswari e Truman, 2004)

CAPÍTULO 5 – ESTUDO DE CASO

5.1 CONSIDERAÇÕES INICIAIS - LT 500KV TUCURUÍ–XINGU–JURUPARI– ORIXIMINÁ

As obras das Linhas de Transmissão (LTs) 500 kV Tucuruí-Xingu-Jurupari e suas Subestações (SE) foram objetos do Leilão 04/2008 realizado pela ANEEL, com a participação de empresas nacionais e estrangeiras. Em julho de 2008 o Grupo Isolux Corsán foi declarado vencedor do leilão, assinando o contrato de Concessão em outubro de 2008, constituindo as LTs 500 kV Tucurui - Xingú – Jurupari, 500 kV Jurupari – Oriximiná e 230 kV Jurupari – Laranjal – Macapá que fazem parte da Interligação que atende o Sistema Interligado Nacional (SIN). A implantação da Interligação Tucuruí-Macapá-Manaus, com 1.829 km de linhas de transmissão, para efeito de leilão foi dividida em três lotes, conforme ilustrado na Figura 5.1. Ressalta-se a interligação Oriximiná – Manaus não fez parte desse leilão.

Figura 5.1 – Lotes de Linhas de Transmissão: 500 kV Tucurui - Xingú – Jurupari (amarelo), 500 kV Jurupari – Oriximiná (azul) e 230 kV Jurupari – Laranjal do Jari – Macapá (roxo), IBAMA (2011).

Um dos grandes desafios para engenharia brasileira associados a uma das linhas de Transmissão mencionadas é uma travessia no Rio Amazonas. A travessia está localizada no km 238 da LT 500 kV Xingu-Jurupari, no município de Almeirim, conforme ilustrado na Figura 5.2.

Figura 5.2 -: Detalhe da Localização da Travessia (Adaptado de IBAMA, 2011).

É muito importante destacar que esta travessia, devido à sua grande dimensão (mais de 2 km), foi projetada para garantir todas as distâncias mínimas de segurança previstas pela norma ABNT NBR- 5422 (Projeto de Linhas Aéreas de Transmissão de Energia Elétrica), atendendo a NORMAM 11/DPC (Normas da Autoridade Marítima para Obras, Dragagem, Pesquisa e Lavra de Minerais Sob, Sobre e às Margens das Águas sob Jurisdicionais Brasileiras) referente a navegação do Rio Amazonas, e a Portaria nº 1.141/GM5. Além disso foram respeitadas as normas aéreas do COMAR. (EDITAL DO LEILÃO Nº 004/2008-ANEEL). A dimensão do vão de travessia do Rio Amazonas pode ser observada na Figura 5.3.

Figura 5.3 - Detalhe do Vão da Travessia, com mais de 2 km (IBAMA, 2011).

5.2 AS TORRES ANALISADAS

Devido ao enorme vão de travessia, cerca de 2100 metros, foi necessário a instalação de duas torres de suspensão (GTS 238/1 e GTS 241/1), com circuito duplo, de 296 metros de altura cada, sendo a torre 238/1 instalada na margem junto à Ilha de Jurupari e a torre 241/1 no morro da margem oposta, o que também pode ser observado na Figura 5.3. A Figura 5.4 apresenta uma visão panorâmica de uma das torres de suspensão - torre GTS 238/1 (Torre da Ilha). Para fins de comparação uma ilustração da Torre Eiffel (famoso monumento localizado em Paris na França) foi inserida, na mesma figura, ao lado da referida torre da travessia do rio Amazonas. Cabe mencionar que a torre da travessia é apenas 28 metros menor que a torre Eiffel, se comparadas as alturas máximas (296 m versus 324 m, respectivamente). Mas quando se compara a torre GTS 238/1 com a altura do observatório da torre Eiffel, ela é 20 metros maior (296 m versus 276 m, respectivamente).

Figura 5.4 – Comparação entre a Torre de Suspensão GTS 238/1 e a Torre Eiffel (Adaptado de Motta et al, 2014).

A Figura 5.5 apresenta ambas estruturas já executadas para a travessia do Rio Amazonas, GTS 238/1 (Torre da Ilha) à frente e GTS 241/1 (Torre do Morro) ao fundo.

Figura 5.5 – Vista Panorâmica da Travessia com as Estruturas 238/1 e 241/1.

Cabe reforçar que para o lançamento dos condutores nestas estruturas um esquema especial teve que ser projetado e executado, conforme esquematizado na Figura 5.6.

Figura 5.6 - Esquema do Processo de Lançamento dos Cabos na Travessia

As torres GTS apresentam características pouco comuns às torres de linhas aéreas de transmissão brasileiras, não só por suas grandes dimensões, mas também pelo fato de serem

constituídas de perfis tubulares. Conforme Motta et al. (2014), em razão de sua altura considerável e dos carregamentos de ventos aos quais estão submetidas, não se pode desprezar os afeitos dinâmicos atuantes nestas estruturas. A geometria da torre com suas principais dimensões está apresentada na Figura 5.7.

Figura 5.7 - Geometria do Modelo das Torres GTS (Lin et al., 2014)

Lin et al. (2014) apresentam em seu trabalho original os detalhes do projeto, fabricação e construção das torres GTS. A seguir são fornecidas informações relativas às caraterísticas estruturais e aos valores dos carregamentos considerados para o projeto dessas peculiares estruturas.

5.2.1 GENERALIDADES

Os elementos básicos de uma linha de transmissão são os condutores de fase, cabos para-raios, isoladores e a estrutura propriamente dita. Esses elementos são responsáveis por, praticamente, todos os carregamentos (verticais e horizontais) que o sistema torre-fundação recebe.

O condutor e os cabos para-raios utilizados foram do tipo AACSR/HS, aço revestido de alumínio (AC) e OPGW SM, respectivamente. Suas propriedades são mostradas na Tabela 5.1. A grande diferença entre eles é a quantidade de cabos de aço envolvidos em cada um.

	1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Itona	Condutor	Pára-raios		
Itens	Colldutoi	AC	OPGW	
Tipos	AACSR/HS	Aço revestido de alumínio	OPGW SM	
Entrançamento	42 cabos Al 6201-T81 37 cabos aco HS	37 cabos aço AC	45 cabos aço AC	
Seção	775.10mm ²	297.57mm ²	349.14mm ²	
Diâmetro	36.21mm	22.40 mm	24.30mm	
Densidade Linear	3.383kgf/m	2.059kgf/m	2.30kgf/m	
Resistência Última	50914kgf	36691kgf	40539kgf	

Tabela 5.1-: Propriedades do Condutor e do Cabo Pára-raios (Lin et al, 2014)

A Figura 5.8 apresenta imagens das bobinas com os cabos tipo AACSR/UGS 540 (Aluminium Alloy Conductor Steel Reinforced). Observa-se também uma das inspeções realizadas com auxílio de paquímetro nos cabos para verificar o diâmetro nominal (36,3 mm). Um detalhe do cabo utilizado também pode ser visualizado na mesma figura.

Figura 5.8 - Cabo AACSR/UGS 540 utilizado (HANGZHOU CABLE Co., LTD, 2012)

Os isoladores são instalados em um conjunto denominado de cadeias de isoladores, e servem juntamente com as ferragens, para fixar os condutores nas estruturas, mantendo-se o isolamento necessário entre eles. No caso específico das torres de suspensão da travessia da linha de transmissão em questão o principal isolador utilizado foi o isolador tipo concha bola FC 400/205 DR.

A Tabela 5.2 apresenta as principais características do isolador utilizado.

Tabela 5.2 - Calacterísticas do Isolador (Catalogo SEDIVER)							
	Designação IEC	U400B					
	Diâmetro (D)	360mm					
CARACTERÍSTICAS ´GERAIS	Passo (P)	205mm					
	Distância Mínima Nominal de	550mm					
	Escoamento						
	Tipo de Engate IEC 60120/MBR	20					
	7108-1	28					
	Peso Líquido Aproximado	14kg					
	Tensão Suportada (por 1 min)	90kV (seco)					
		55kV (molhado)					
ELÉTRICO	Tensão Suportada Devido à Impulso Atmosférico	140kV					
	Tensão de Perfuração em Óleo	130KV					
DEPEMPENHO MECÂNICO	Carga Mínima de Falha	400kN					

Tabela 5.2 - Características do Isolador (Catálogo SEDIVER)

A Figura 5.9 apresenta uma imagem com as principais dimensões da cadeia de isoladores das torres GTS.

Figura 5.9 - Cadeia de Isoladores Torre GTS

Devido às suas grandes dimensões as estruturas das torres analisadas foram projetadas e executadas em perfis de aço tubulares. O aço utilizado foi o Q345 (norma chinesa equivalente à norma americana ASTM A572) e as dimensões dos perfis foram variadas. O maior diâmetro utilizado nestes perfis foi de 1530 mm com espessura da chapa de 28 mm. A Figura 5.10 apresenta uma imagem dos perfis de maior diâmetro. O Anexo C apresenta maiores detalhes dos perfis utilizados.

Figura 5.10 - Perfis Tubulares Utilizados (Lin et al., 2014)

Outro fator importantíssimo referente as estruturas são os tipos de ligações entre os perfis. Para as torres analisadas foram utilizados quatro tipos de ligação listadas a seguir.

- Ligações em flange para os tubos principais,
- Ligações de tubo soldadas para os tubos principais com membros cruzando, outras conexões;
- Chapa Gusset em U;
- Chapa Gusset única.

A Figura 5.11 apresenta um esquema dos quatro tipos de ligação utilizadas nas torres tipo GTS 238/1 e 241/1 na travessia do Rio Amazonas.

Figura 5.11 – Ligações Metálicas nos Perfis Tubulares

5.2.2 DETERMINAÇÃO DA VELOCIDADE DO VENTO

O vento foi calculado de acordo com a norma internacional IEC 60826:2017 (Overhead Transmission Lines: Design Criteria). O cálculo é muito parecido com o proposto pela norma brasileira NBR 6123 (Força Devido ao Vento em Edificações). A velocidade de referência do vento (V_R) em m/s, conforme a IEC 60826:2017, correspondente ao período de retorno T é definida como o valor médio do vento durante um período de 10 minutos a uma altura de 10 metros acima do solo.

A IEC 60826:2017 ainda divide o terreno em quatro categorias (A, B, C e D) conforme a Tabela 5.3.

Catergoria do Terreno	Características de Rugosidade do Terreno
A	Grandes extensões de superficie sobre águas, áreas costeiras planas
В	Campo aberto com poucos obstáculos, por exemplo aeroportos e plantações com poucas árvores ou construções.
C	Terreno com pequenos obstáculos numerosos ou pouca altura (cercas, árvores e construções)
D	Áreas urbanas ou terreno com muitas arvores altas

Tabela 5.3 - Categorias de Classificação do Terreno (Adaptado IEC 60826:2017)

Normalmente V_R é medida em estações meteorológicas que usualmente estão localizadas em áreas de terreno de categoria B tais como aeroportos, com exceção daquelas ao longo da costa ou em áreas urbanas. A IEC 60826:2017 chama a velocidade de referência nessas situações de V_{RB} e define então V_R a partir da Equação 5-1:

$$V_R = K_R V_{RB}$$
 Equação 5-1

onde K_R é o fator de rugosidade do terreno e pode ser obtido da Tabela 5.4. O local de instalação da torre é classificado como um terreno de categoria B, e portanto o $K_R = 1$.

Categoria do Terreno Fator А В С D 0,10 to 0,12 0,22 α 0,16 0,28 0,85 1,08 1,00 0,67 KR

Tabela 5.4 - Fatores que Descrevem a Ação do Vento Dependendo da Categoria do Terreno (Adaptado IEC 60826:2017)

No entanto, a velocidade do vento meteorológico pode ser registrada em um local qualquer (de acordo com as categorias apresentadas) localizado dez metros acima do solo como um valor médio durante um determinado período medido em segundos, sendo $V_{x,t}$ esta velocidade. Caso o vento não seja medido a dez metros de altura acima do solo, os dados devem ser ajustados primeiramente para essa altura de referência.

A variação de V em termos de altura não foi levada em consideração pela norma, pois os anemômetros são, na maioria das vezes, colocados a uma altura de cerca de 10 metros acima do solo. Se esta altura z (m) difere de 10 metros, a variação da velocidade do vento com altura z pode ser derivada da chamada "lei da potência", mostrada na Equação 5-2. O valor de α também é encontrado na Tabela 5.4:

$$V_z = V_R (\frac{z}{10})^{\alpha}$$
 Equação 5-2

onde:

 V_z = velocidade na altura diferente de 10 metros.

Ou de uma maneira mais geral pode ser obtida com a Equação 5-3:

$$V_{z1} = V_{z2} \left(\frac{z1}{z2}\right)^{\alpha}$$
 Equação 5-3

onde:

z1 = altura na qual se deseja determinar a velocidade;

z2 = altura de referência;

- V_{z1} = velocidade na altura a qual se deseja determinar;
- V_{z2} = velocidade na altura de referência.

Caso o período seja diferente de dez minutos as curvas da Figura 5.12 permitem determinar a relação $V_{x,t} / V_{x,10 \text{ min}}$ em função do período médio de cada categoria de rugosidade na localização do sítio meteorológico. Esses valores podem ser usados na ausência de dados ou estudos locais.

Figura 5.12 - Relação Entre as Velocidades do Vento Meteorológico a Uma Altura de 10m Dependendo da Categoria do Terreno e do Período de Média (Adaptado IEC 60826:2017).

A velocidade de referência considerada nas análises para as Torres GTS foi de 35 m/s, determinada conforme as prescrições das IEC 60826:2017.

A NBR 6123:1988 possui um ábaco com isopletas para a determinação da velocidade básica dos ventos no Brasil. A Figura 5.13 apresenta as isopletas (adaptadas da

NBR 6123:1988) para determinação do vento de projeto conforme as prescrições normativas brasileiras. Nesta mesma figura foi inserida um retângulo com a localização aproximada das torres GTS. É possível observar que, de acordo com a NBR 6123:1988 a velocidade básica seria de 30 m/s.

Figura 5.13 - Isopletas de Velocidade Básica e Localização Aproximada das Torres GTS (NBR 6123:1988)

Dadas as dimensões das torres GTS, e até mesmo das torres usuais, é de se esperar que mais de um valor para a velocidade do vento seja considerado ao longo de sua altura. Desta forma, a Figura 5.14 apresenta um esquema da torre GTS e um diagrama com suas respectivas velocidades do vento consideradas em função de suas alturas para a obtenção dos carregamentos nas estruturas GTS.

Figura 5.14 – Esquema da Estrutura das Torres GTS e as Velocidades do Vento (m/s) Consideradas para Obtenção das Pressões e os Carregamentos de Vento ao longo da Estrutura.

5.3 FUNDAÇÃO DA TORRE 241/1

A fundação da estrutura 241/1 é composta por quatro blocos de coroamento com 36 estacas raiz cada. Os blocos são interligados por vigas de travamento (80 cm x 130 cm), sendo que cada uma dessas vigas de travamento possui 8 estacas raiz. As 144 estacas dos blocos de

coroamento possuem 25 metros de profundidade. Os diâmetros dessas estacas variam da seguinte forma: 41 cm do nível do terreno até 10 m de profundidade e 31 cm entre 10 m e 25 m. Já as 32 estacas das vigas de travamento possuem apenas 20 metros de profundidade. Os diâmetros das mesmas variam de outra forma: 41 cm do nível do terreno até 10 m de profundidade e 31 cm entre 10 m e 20 m.

Cabe ainda mencionar o bloco para instalação da grua, executado no centro da torre. As fundações foram constituídas por quatro estacas raiz com as mesmas características das estacas das vigas de travamento.

O concreto utilizado para os elementos de fundação possui resistência característica a compressão (fck) de 35 MPa enquanto a argamassa das estacas raiz possui fck = 25MPa. A planta das fundações é ilustrada na Figura 5.15.

Figura 5.15 – Planta das Fundações da Estrutura 241/1 (Torre do Morro)

A Figura 5.16 apresenta do Detalhe A com as dimensões do bloco em planta, além das distâncias das estacas.

Figura 5.16 - Detalhe A com a Vista em Planta do Bloco

A Figura 5.17 apresenta o Corte E-E com as dimensões verticais do bloco e as distancias entre as estacas.

Figura 5.17 - Corte E-E com as Dimensões Verticais do Bloco

A Figura 5.18 apresenta a vista em planta de um trecho de uma das vigas de travamento. O corte D-D, que indica sua altura, também é ilustrado.

Figura 5.18 - Corte D-D Viga de Travamento

A Figura 5.19 apresenta os cortes AA e BB das fundações da torre GTS 241/1.

5.4 ENSAIOS REALIZADOS E CARACTERIZAÇÃO DO SOLO

Cabe mencionar que o objetivo desta seção não é se aprofundar nos detalhes de cada ensaio especificamente, mas apenas fornecer uma ideia geral de como se deu a investigação geotécnica do solo nas regiões de instalação das torres.

Para a caracterização do solo foram realizados diversos tipos ensaios na região onde foram executadas as torres da travessia.

• Sondagem a percussão com medida de N_{SPT} Instrumentado

O N_{SPT} instrumentado tem como objetivo conhecer a resistência do solo em função do número de golpes e as perdas de energia ao longo de sua realização.

Esse ensaio consiste da execução da convencional sondagem a percussão com medida de N_{SPT} com o acréscimo da medida de energia em dois pontos: abaixo da cabeça de bater e junto ao amostrador com o uso do Hammer Performance Analyzer.

De uma forma geral as sondagens a percussão convencionais foram realizadas até 60 metros de profundidade, sendo que a instrumentação para verificar as perdas de energia era realizada até, no máximo, os 35 primeiros metros.

• Sondagens Rotativas

A sondagem rotativa permite a penetração da sonda em camadas impenetráveis a percussão. Para o caso de existência de rocha esta sondagem permite uma caracterização através de um índice qualitativo chamado RQD (Rock Quality Designation ou Designação da Qualidade da Rocha).

O boletim de sondagem mista utilizado para a construção de um perfil aproximado do solo para o presente trabalho apresenta a condição de impenetrabilidade ao trépano de lavagem na profundidade de 16 metros, tendo a partir daí sido realizada a sondagem rotativa de forma a obter uma caracterização para as camadas mais resistentes.

• Ensaios de Infiltração e/ou Perdas D'água

Ajudam a detectar a presença de planos de falha no morro onde está locada a torre por meio da medição da infiltração da água no solo-rocha.

Em cada perfuração feita pela sondagem rotativa foram feitos ensaios de infiltração e/ou perdas d'água nas profundidades onde foram identificadas mudanças de estratigrafia.

• Ensaios de laboratório

Visam conhecer as propriedades físicas e químicas do solo de modo a identificar a agressividade e outros dados de interesse geotécnico. Amostras indeformadas são coletadas no

local, produtos do amostrador das sondagens a percussão, e encaminhadas ao laboratório para a execução dos ensaios.

No caso das investigações para as torres foram realizados ensaios para a determinação da curva granulométrica (sedimentação e peneiramento) e ensaios para a determinação dos Limites de Atterberg (Limites de Liquidez e Plasticidade)

A Figura 5.20 apresenta os 30 metros iniciais do boletim de sondagem misto utilizado como base para caracterizar a região das fundações da torre GTS 241/1. O Anexo A fornece o boletim completo com a sondagem mista, que vai até cerca de 87 metros de profundidade.

Devido às condições do local avançou-se com a prospecção percussiva mesmo já atendendo aos critérios normativos de paralisação das sondagens pelo método SPT (NBR 6484:2001 Solo - Sondagens de simples reconhecimento com SPT - Método de ensaio). Portanto, o N_{SPT} deve ser analisado com cautela.

Figura 5.20 - Boletim Misto de Sondagem Torre 241/1 até 30 Metros de Profundidade

CAPÍTULO 6 – DETERMINAÇÃO DOS CARREGAMENTOS E ELABORAÇÃO DO MODELO DE ELEMENTOS FINITOS

6.1 GENERALIDADES

Neste capítulo são apresentadas as metodologias aplicadas para a determinação dos carregamentos, assim como a estratégia para a elaboração do modelo de Elementos Finitos do sistema completo torre-fundação-solo.

Primeiramente são apresentadas as condições de carregamento consideradas no projeto das Torres GTS e a determinação dos carregamentos estático e dinâmico de vento em conformidade com a norma IEC 60826:2017.

Para a análise dinâmica é descrito o processo estatístico envolvido na determinação dos carregamentos não-determinísticos e o equacionamento utilizado para a implementação de um programa no software MATLAB para a geração de tais carregamentos.

Finalmente, descreve-se o processo de construção do modelo de Elementos Fintos da torre e de sua fundação utilizado para as análises estáticas, modal e dinâmica transiente no software ANSYS. É apresentada também como foi considerado o efeito de amortecimento estrutural do sistema torre-fundação-solo.

6.2 CARREGAMENTOS

6.2.1 CONDIÇÕES DE CARREGAMENTO DE PROJETO

Os carregamentos de projeto no caso de estruturas de torres de linhas de transmissão possuem uma característica peculiar em relação a outros projetos convencionais na engenharia civil. Além dos carregamentos permanentes verticais de peso-próprio dos equipamentos e da estrutura, existe uma componente horizontal, geralmente de maior grandeza, relacionada as trações nos condutores e ventos na estrutura/condutores. Outro fator que não pode ser esquecido está relacionado as cargas provisórias de montagem e/ou manutenção das estruturas, nesse caso considerando o peso próprio de operários e ferramentais.

Com o objetivo de projetar as duas torres de suspensão GTS da travessia do Rio Amazonas, além dos pesos próprios, nove condições de carregamento horizontal foram consideradas:

- (1) Vento Sinótico atuando transversalmente;
- (2) Vento Sinótico atuando longitudinalmente;
- (3) Vento Sinótico atuando em um ângulo de 45° com a direção da linha;
- (4) Vento Longitudinal com rompimento de qualquer condutor;
- (5) Vento Longitudinal com rompimento de qualquer pára-raios;

- (6) Vento de Tempestade atuando transversalmente;
- (7) Vento de Tempestade atuando longitudinalmente;
- (8) Vento de Tempestade atuando em um ângulo de 45° com a direção da linha;
- (9) Vento Longitudinal com rompimento de todos os condutores.

6.2.2 CONSIDERAÇÃO ESTÁTICA EQUIVALENTE

6.2.2.1 CONDUTORES, CABOS PÁRA-RAIOS E ISOLADORES

A pressão de referência do vento foi calculada em função da velocidade de referência do vento, conforme a norma IEC 60826:2017. A Equação 6-1 apresenta a expressão utilizada.

$$q_0 = \frac{1}{2} \tau \mu (K_R V_{RB})^2$$
 Equação 6-1

onde:

 q_0 = pressão dinâmica de referência em N/m^2 ;

 V_{RB} = velocidade do vento de referência em m/s em terreno de categoria B (ver Equação 5-1);

 μ = massa específica do ar que é igual a 1,225 kg/m^3 em uma temperatura de 15°C e a uma pressão atmosférica de 101,3kPa no nível do mar;

 τ = fator de correção da densidade do ar, quando da determinação da velocidade do vento em altitude ou temperatura muito diferentes das suposições de nível do mar e 15°C, o fator de correção τ pode ser aplicado à pressão q₀, para os demais casos τ é considerado igual a 1; K_R = coeficiente de rugosidade (ver Tabela 5.4).

A Tabela 6.1 apresenta os valores do fator de correção τ , relativo à temperatura e à altitude.

Temperatura	Altitude			
-C	0	1 000	2 000	3 000
30	0,95	0,84	0,75	0,66
15	1.00	0,89	0,79	0,69
0	1.04	0,94	0,83	0,73
-15	1,12	0,99	D,88	0,77
-30	1,19	1,05	0,93	0,82

Tabela 6.1 - Fator de Correção τ da pressão dinâmica do vento de referência q₀ devido a altitude e temperaturas (IEC 60826:2017)
A seguir estão apresentadas as pressões nos condutores, cabo pára-raios, isoladores e na estrutura.

- Ventos Sinóticos
 - Condutores 145 kgf/m²
 - Para-raios 148 kgf/m²
 - Isoladores 256 kgf/m²
- Ventos de Tempestade
 - Condutor e Para-raios (sobre um vão de 100 m) 225 kgf/m²
 - Isoladores 270 kgf/m²

A linha de transmissão objeto de estudo deste trabalho se trata de uma linha de 500KV com circuito duplo (ver Seção 2.1), portanto esta possui seis cabos condutores além de dois cabos para-raios. Os condutores são fixados nas mísulas da estrutura através das cadeias de isoladores (Figura 5.9) e os cabos para-raios são fixados através das manilhas. Considerando o exposto, os carregamentos de vento nesses elementos são considerados como atuando na estrutura na forma das árvores de carregamento da Seção 6.2.2.4 e conforme indicado na Figura 6.1

Figura 6.1 - Ilustração dos Pontos de Fixação dos Cabos Condutores e Para-raios

Os cálculos das pressões de vento e do dos carregamentos para a estrutura, devido a sua extensão, estão apresentados no Anexo B deste trabalho.

6.2.2.2 CARGAS DE VENTO NOS CONDUTORES E CABOS PÁRA-RAIOS

Os efeitos do vento nos condutores e nos cabos para-raios consistem em cargas devido à pressão do vento, bem como o efeito do aumento da tração.

De acordo com o previsto na IEC 60826:2017 a carga (A_c) devido ao efeito da pressão do vento sobre um vão de vento L, aplicada no suporte e soprando em um ângulo Ω com os condutores, é dada pela Equação 6-2:

$$A_C = q_0 C_{XC} G_C G_L dL \sin^2 \Omega$$
 Equação 6-2

onde:

 C_{XC} = coeficiente de arrasto do condutor é igual a 1,00 para os condutores e velocidades do vento geralmente considerados retangulares. Outros valores podem ser usados se derivados de medições diretas ou testes de túnel de vento;

 G_C = fator de vento combinado para os condutores dados na Figura 6.2, que depende da altura z e das categorias de terreno;

 G_L = fator de vão dado na Figura 6.3;

d = diametro do condutor em (m);

L = vão de vento do suporte, igual à metade da soma do comprimento dos vãos adjacentes do suporte.

A Figura 6.2 fornece os valores de G_C em função da categoria do terreno (A,B, C ou D) e da altura em relação ao solo.

Figura 6.2 - Fator de Vento Combinado para os Condutores em Várias Categorias de Terreno e Alturas Acima do Solo (IEC 60826:2017)

A Figura 6.3 fornece valor de G_L em função do comprimento vão (L).

Figura 6.3 - Fator de Vão (IEC 60826:2017)

6.2.2.3 CARGAS DE VENTO NOS ISOLADORES

As cargas de vento que atuam sobre as cadeias de isoladores (A_i) se originam da carga A_c transferida pelos condutores e da pressão do vento atuando diretamente nas cordas do isolador. Esta última é aplicada convencionalmente no ponto de fixação ao suporte na direção do vento e seu valor é dado por:

$$A_i = q_0 C_{Xi} G_t S_I$$
 Equação 6-3

onde:

 C_{Xi} = coeficiente de arrasto para os isoladores, considerado igual a 1,2;

 G_t = fator de vento combinado para os isoladores que varia com a altura do centro de gravidade da corda do isolador e a categoria do terreno (ver Figura 6.4);

 S_i = área da corda do isolador projetada horizontalmente em um plano vertical paralelo ao eixo da corda (m²). No caso de várias cadeias, a área total pode ser considerada de maneira conservadora como a soma da área de todas as cadeias.

De acordo com a prática do projeto de linhas de transmissão pode-se afirmar que o vento nas cadeias de isoladores tem pequeno efeito no dimensionamento dos suportes. Consequentemente, pode ser aceitável que na maioria das linhas de transmissão o cálculo da pressão do vento seja simplificado, adotando de maneira conservadora a mesma pressão aplicada aos suportes.

A Figura 6.4 apresenta o ábaco para a obtenção do fator de vento combinado (G_t) para suportes e isoladores conforme a IEC 60826:2017

Figura 6.4 – Fator de Vento Combinado G_t (IEC 60826)

6.2.2.4 CARGAS DE PROJETO

Para as nove hipóteses de carregamento apresentadas anteriormente foi elaborada uma "árvore de carregamento" para as cargas estáticas a serem consideradas no sistema torrefundação-solo. A Figura 6.5 apresenta todos os casos considerados no projeto das torres GTS.

De acordo com a Seção 2.2.1 todas as hipóteses de carregamento devem ser verificadas para o caso da instalação de somente um circuito (três fases e um cabo pára-raios no mesmo lado da torre).

Para carregamentos transversais devem ser consideradas hipóteses em que 75% atuam em uma face da torre, 25% na outra face.

Para carregamentos verticais (duas hipóteses): 1^a - 75% atuam em uma face da torre 25% na outra face, e 2^a - 30% atuam em uma face da torre e 10% na outra (para esta condição utiliza-se o peso próprio sem qualquer coeficiente de majoração).

Além disso, considera-se carregamentos longitudinais com 100% na face da torre, o que resulta no caso mais desfavorável para o dimensionamento dos elementos e ligações.

Para as condições de carregamento das hipóteses 6, 7 e 8, ou seja, relacionados aos ventos de tempestade, as seguintes combinações foram calculadas:

a) Carregamento vertical mostrado em cada diagrama de condição de carga (árvore de carregamentos);

b) Nenhum carregamento transversal ou longitudinal;

c) Vento na torre, conforme indicado em cada diagrama de condição de carga (árvore de carregamentos) aplicado a partir do nível do solo até a altura correspondente ao ponto de interseção das pernas inclinadas da torre (altura H1). Nenhum vento na torre acima de H1;
d) Os cálculos devem ser repetidos para cada valor possível de H1.

6.2.2.5 VENTO NA ESTRUTURA

Para obtenção das forças de vento nas estruturas da torre e do elevador foram aplicadas a Equação 6-4 e a Equação 6-5 para os ventos Sinótico e de Tempestade, respectivamente:

• Força de Vento Sinótico (kgf)

$$F = 100 \left(\frac{H}{10}\right)^{0,167} (1 + 0.2 \sin^2 2\theta) (S_{T1}C_{XT1} \sin^2 2\theta + S_{T2}C_{XT2} \sin^2 2\theta)$$
Equação 6-4

• Força de Vento de Tempestade (kgf)

 $F = 225(1 + 0.2\sin^2 2\theta)(S_{T1}C_{XT1}\sin^2 2\theta + S_{T2}C_{XT2}\sin^2 2\theta)$

Equação 6-5

onde:

 F_{tower} = carga de vento (kg agindo na direção do mesmo, aplicada no centro de gravidade de cada painel que compõe a torre;

H = Altura à partir do solo (m) do centro de gravidade de cada painel da torre;

 S_{T1}, S_{T2} = Área líquida (m²) das faces 1 e 2 de cada painel, projetadas no plano vertical, respectivamente, das faces 1 e 2;

 C_{XT1}, C_{XT2} = Coeficientes de arrasto das faces 1 e 2 de cada painel da torre (Figura 6.4); θ = Ângulo formado pela direção do vento e a perpendicular da face 1(Figura 6.6).

A Figura 6.6 ilustra como se dá a definição do ângulo de incidência do vento conforme a mesma norma.

Figura 6.6 – Definição do Ângulo de Incidência do Vento (IEC 60826)

6.2.3 FATOR DE RAJADA DAS CARGAS DE VENTO

Com o intuito de simplificar a abordagem dinâmica devido a atuação de alguns carregamentos, normalmente, na prática da engenharia, um fator de majoração, geralmente é aplicado a um carregamento estático. Assim, aplica-se diretamente esse "novo" esforço majorado como se fosse um esforço dinâmico.

No caso das cargas de vento em estruturas sob a ação do repetido impacto de rajadas de vento o método do fator de carga de rajada (GLF) tradicionalmente é utilizado. Os principais códigos e normas em todo o mundo definem parâmetros para que isso seja possível. Neste processo, o carregamento estático equivalente de vento usado para dimensionamento é igual à força média de vento multiplicada pelo fator de carga de rajada. O GLF leva em conta a dinâmica da flutuação do vento e qualquer amplificação de carga introduzida pela dinâmica da construção.

O GLF leva em conta a natureza dinâmica da flutuação do vento, assim como qualquer amplificação introduzida pelas características dinâmicas da estrutura.

Conforme Bashor e Kareem (2009), existem vários métodos para calcular o fator de rajada (ou de ressonância) em diferentes normas. A norma internacional ISO 4354:2009 (Wind Actions on Structures) prevê C_{dyn} para o cálculo do fator de rajada. A norma americana ANSI/ASCE 7~16 (Minimum Design Loads for Buildings and Other Structures) define o fator de rajada G para a consideração dos efeitos dinâmicos. A norma AS/NZS 1170:2011 (Structural design actions - Wind actions) também adota C_{dyn} para o cálculo do fator de rajada. A norma canadense NBCC 2015 (National Building Code of Canada) fornece C_g para a consideração do efeito de rajada. As recomendações da norma japonesa AIJ (Architectural Institute of Japan) utilizam G_f para calcular o fator. Em geral, o fator de rajada tem relação com o relevo e com as propriedades dinâmicas da estrutura.

De acordo com Solari (1993), o efeito das rajadas de vento em estruturas e, particularmente, a avaliação do fator de rajada, na máxima resposta da estrutura e do equivalente estático representam os principais tópicos no panorama da pesquisa desenvolvida em engenharia eólica nos últimos 40 anos.

Para o caso das torres GTS o fator de carga de rajada foi calculado de acordo com a norma IEC 60826:2017. O valor utilizado foi de 1.52, pelo qual foi multiplicado o vento na torre de forma a determinar as cargas de projeto.

6.2.4 CONSIDERAÇÃO DINÂMICA NÃO-DETERMINÍSTICA

Nesta seção é apresentada a metodologia utilizada para a modelagem do carregamento não determinístico e aleatório do vento. Tal carregamento é um dos mais relevantes fatores quando se trata da análise dinâmica em torres de transmissão. É importante a consideração do caráter aleatório e instável na aplicação desse tipo de carregamento. Para isso, o mesmo deve ser tratado de forma não-determinística com a geração de séries de carregamentos com seu posterior tratamento estatístico.

Com esse objetivo, muitas vezes utiliza-se da metodologia de Franco (1993), caracterizada por uma simulação numérica aleatória de componentes harmônicos através do método de Monte Carlo (Franco ,1993) e, naturalmente, de conceitos estatísticos associados.

Na metodologia o carregamento do vento é dividido em duas parcelas; a parcela média, que representa o carregamento estático e a parcela flutuante, que representa as variações que ocorrem (rajadas) (ver Equação 2-2).

A parcela flutuante é determinada pela superposição de componentes harmônicos com fases aleatoriamente definidas. Segundo Franco (1993), a parcela referente à flutuação pode ser dividida em uma série aleatória de 11 componentes harmônicos, onde um deles coincida com a frequência ressonante da estrutura, e os demais sejam múltiplos ou submúltiplos desta. A amplitude de cada um dos harmônicos pode ser obtida em função do espectro de potência do vento.

6.2.4.1 DEFINIÇÃO DAS SÉRIES TEMPORAIS DA VELOCIDADE DO VENTO

De acordo com Franco (1993) a definição simplificada da parcela flutuante da velocidade do vento v(t) é apresentada por uma única função harmônica (qualquer solução não trivial da equação de Laplace, cujas derivadas primeira e segunda são contínuas), representada pela Equação 6-6.

$$v(t) = V_0 \cos(2\pi f t)$$
 Equação 6-6

A parcela flutuante da velocidade de vento está inserida em um processo aleatório estacionário, ergódigo com média igual a zero (Shinozuka e Jan, 1972).

Nesse estudo considerou-se que a parcela flutuante da velocidade do vento é calculada com base na superposição de harmônicos, considerando-se que a amplitude destes é definida pela densidade espectral da excitação, que por sua vez é definida através do Espectro de Potência de Kaimal (ver Figura 2.11). O caráter aleatório não-determinístico da parcela flutuante da velocidade do vento está inserido na aleatoriedade dos ângulos de fase (números randômicos). A Equação 6-7 apresenta a formulação matemática não determinística para aparcela flutuante do vento utilizada no âmbito deste trabalho (Franco, 1993):

$$v(t) = \sum_{i=1}^{N} \sqrt{2S^{V}(f_{i})\Delta f} \cos(2\pi f_{i}t + \theta_{i})$$
 Equação 6-7

onde:

N = número de divisões no espectro de potência de Kaimal; $S^V(f_i) =$ densidade espectral da parcela flutuante do vento na frequência f_i (ver Seção 2.2.3.1); $f_i =$ frequência em Hz;

 Δf = incremento da frequência em Hz, em relação ao espectro de Kaimal;

 θ_i = ângulo de fase aleatório entre 0 e 2π .

Sendo a amplitude das funções temporais definida pela Equação 6-8.

$$a_i = \sqrt{2S^V(f_i)\Delta f}$$
 Equação 6-8

Para determinação das séries temporais, é necessária a escolha das faixas de frequências dentro do espectro de potência do vento, abrangendo as principais frequências naturais do modelo estrutural. A faixa de frequência adotada neste trabalho contém as dez primeiras frequências naturais da estrutura, sendo adotada a faixa de 0,05 Hz até 2,5 Hz. Em seguida, conforme Rechtman (2018), dividiu-se esta faixa de frequência em "N" partes conforme a Equação 6-9, onde N = 81, de modo que o incremento Δf é igual a 0,0302 Hz.

$$\Delta f = \frac{f_{max} - f_{min}}{N}$$
 Equação 6-9

Os valores de f_i utilizados na Equação 6-7 e na Equação 6-8 correspondem ao valor central de cada uma das N faixas de frequência definidas.

6.2.4.2 DETERMINAÇÃO DO CARREGAMENTO DE VENTO NÃO DETERMINÍSTICO

Como a velocidade do vento utilizada é o somatório de duas parcelas, a média e a flutuante, que varia ao longo do tempo, a Equação 6-1 pode ser reescrita como a Equação 6-10:

$$q_{0(t)} = \frac{1}{2} \tau \mu K_R (\bar{V} + v(t))^2$$
 Equação 6-10

A Equação 6-11 apresenta a força do vento que atua sobre cada nó da torre.

$$F_{tower} = q_0(t)(1 + 0.2 \times sen^2 2\theta)(S_{T1}C_{XT1}\cos^2 2\theta + S_{T2}C_{XT2}sen^2 2\theta) \qquad \text{Equação 6-11}$$

Os parâmetros da Equação 6-11 são definidos conforme a Seção 6.2.2.5

6.2.4.3 GERAÇÃO DAS SÉRIES DE CARREGAMENTO NÃO-DETERMINÍSTICO NO SOFTWARE MATLAB

Devido à complexidade para a obtenção da resposta dinâmica da estrutura, foi necessária a implementação de uma rotina do software MATLAB, a partir da qual foram geradas as séries de carregamento não-determinístico a serem aplicadas no modelo de Elementos Finitos para a análise.

A partir da aplicação da quantidade arbitrária de dez séries de carregamento dinâmico não determinístico foram obtidos os deslocamentos translacionais horizontais máximos na estrutura, de acordo com o feito por Rechtman (2018).

O sentido de aplicação do carregamento de vento dinâmico não determinístico foi definido da mesma forma que o estático, através da análise dos modos de vibração da torre. Logo as cargas serão aplicadas na direção do eixo "X", mesma direção, portanto do primeiro modo de vibração.

6.3 MODELAGEM

6.3.1 MODELAGEM DA TORRE

Para a modelagem da estrutura da torre, foi utilizado o elemento de viga espacial BEAM188 (ANSYS, 2018) para representar os montantes e os elementos principais da torre.

O elemento BEAM188 (Figura 6.7) é um elemento uniaxial de viga espacial com dois nós "i" e "j", com seis ou sete graus de liberdade por nó, sendo três graus de translação em x, y e z, três graus de rotação em x, y e z e o sétimo grau de liberdade (magnitude de deformação) que é opcional. Esse elemento é apropriado para análises lineares, com grandes rotações, e/ou análises não lineares com grandes deformações (ANSYS, 2018). O elemento permite a orientação e o posicionamento correto das seções transversais através de um nó de orientação espacial "k".

Figura 6.7 – Elemento BEAM188 (ANSYS, 2018)

Considerando a rigidez das ligações utilizadas, as conexões entre os montantes e os contraventamentos foram consideradas rígidas e modeladas através da topologia compartilhada. A topologia compartilhada ocorre quando os corpos são agrupados em partes constituídas por vários corpos, permitindo uma malha contínua nas regiões comuns onde os corpos se tocam

A Figura 6.8 ilustra o modelo da torre desenvolvido, sendo: (a) vista isométrica; (b) vista inferior; (c) detalhe do topo da torre e de suas mísulas.

Figura 6.8 a) – Vista Isométrica do Modelo Completo, b) – Vista Inferior do Modelo c) – Detalhe do Topo da Torre e das Mísulas

A Tabela 6.2 apresenta as estatísticas relativas ao modelo completo mostrado na Figura

Descrição	Quantidade
Nós de Elementos Sólidos	36781
Nós de Elementos de Viga	20144
Número Total de Nós	55919
Elementos Sólidos	8660
Elementos de Viga	9904
Número Total de Elementos	18564
Número de Seções Tranversais	321
Molas	17104

Tabela 6.2 - Estatísticas do Modelo

6.3.2 MODELAGEM DA FUNDAÇÃO

6.8

As fundações foram modeladas utilizando-se os elementos finitos de sólidos 3-D SOLID186 e SOLID187 para os blocos de coroamento e vigas de travamento, e o elemento de viga espacial BEAM188 para as estacas.

O elemento SOLID186, mostrado na Figura 6.9, é um elemento sólido 3-D de ordem superior com 20 nós que apresenta um comportamento de deslocamento quadrático. O elemento é definido por 20 nós, tendo cada um com três graus de liberdade - translações nas direções x, y e z. Neste elemento podem ser aplicados diversos critérios, tais como: plasticidade, hiperelasticidade, fluência, enrijecimento com a tensão, grande deflexão, além de capacidades para grandes deformações. Também possui a vantagem da formulação mista para simular deformações de materiais elastoplásticos quase incompressíveis e materiais hiperelásticos totalmente incompressíveis.

Figura 6.9 - Elemento SOLID186 (ANSYS, 2018)

122

O elemento SOLID187, que pode ser visto na Figura 6.10, também é um elemento de sólido em três dimensões e de ordem superior, porém possui formato tetraédrico e 10 nós com os mesmos graus de liberdade - translações em x, y e z. Esse elemento possui um comportamento quadrático no deslocamento sendo bastante adequado para modelagem de malhas irregulares. O elemento SOLID187 possui as mesmas características mencionadas do SOLID186.

Figura 6.10 - Elemento SOLID187 (ANSYS, 2018)

A Figura 6.11 apresenta o modelo da fundação para a torre composta de: Bloco de coroamento, estacas e vigas de travamento.

Figura 6.11 – Detalhe das Fundações da Torre

6.3.3 MODELAGEM DO SOLO

6.3.3.1 GENERALIDADES

Cabe ressaltar que a abordagem de modelo do solo, o modelo contínuo foi a primeira tentativa de modelo. Essa abordagem é mais completa e representa melhor o comportamento real. Porém necessita de um custo computacional muito elevado.

Portanto, em razão desse enorme custo computacional exigido e em face dos recursos disponíveis o modelo contínuo de solo foi considerado inviável e substituído pelo modelo de molas de Winkler, que, conforme Bowles (1997) apresenta um custo computacional bastante reduzido.

6.3.3.2 TENTATIVA DA UTILIZAÇÃO DO MODELO CONTÍNUO

Inicialmente foi elaborado um modelo de Elemento Finitos em que o solo foi modelado como um meio contínuo com comportamento elastoplástico. Foi adotado um comportamento elástico isotrópico com as propriedades elásticas do solo definidas conforme Jopper (2007) e o modelo de plasticidade de Drucker-Prager (Drucker e Prager, 1952). A vista isométrica do modelo solo-fundação-estrutura completo pode ser vista na Figura 6.12.

Figura 6.12 - Vista Isométrica do Modelo Continuo de solo-fundação-estrutura

A Figura 6.13 apresenta a elevação do modelo do sistema solo-fundação. A divisão das camadas de solo foi elaborada de acordo com o perfil de sondagem mista (ver Figura 5.20). Foram supostos quatro tipos de solo distintos, sendo: do nível do topo das estacas do bloco (3,9m) até 11,9 metros argila silto-arenosa rija; de 11,9 metros até 25,2 metros uma argila silto-arenosa dura; de 25,2 metros até 45 metros uma areia silvosa muito compacta. Cabe ressaltar que esta divisão buscou a situação mais desfavorável para o comportamento da estrutura, resultando assim em um dimensionamento mais a favor da segurança.

Figura 6.13 - Vista em Corte do Modelo Contínuo de Solo e Sua Interação com as Fundações

Apesar de representar um modelo do estado da arte e permitir a avaliação dos níveis de tensão e deformação no solo, do que tratava o objetivo original do presente trabalho, a modelagem do solo resultou em uma malha de elementos finitos com 13.964.253 nós e 8.719.401 elementos, o que culminou em um custo computacional muito maior que a capacidade disponível. Adicionalmente às semanas necessárias para a obtenção de uma malha com características apropriadas, a melhor versão da malha obtida exigiu cerca de 23 horas para ser gerada. A análise estática foi "rodada" por cinco dias ininterruptamente, porém sem que se conseguisse obter quaisquer resultados. O hardware disponível no computador utilizado para a modelagem é descrito na Tabela 6.3:

Tabela 6.3 – Hardware Utilizado para Modelagem				
Atributo	Especificação			
S.O	Windows 10			
RAM	8GB DDR3 1333MHz			
CPU	Intel Core I7 2670QM			
GPU	GT630M 2GB DDR3			
ARMAZENAMENTO	240GB SSD/2TB HDD			

Desta forma não se conseguiu obter um resultado conclusivo e assim, outro modelo de solo mais simples foi proposto – o modelo de Winkler.

6.3.3.3 MODELO DE WINKLER NO SOFTWARE ANSYS®

O solo foi modelado através do elemento finito de mola linear COMBIN14 (ANSYS, 2018), ilustrado na Figura 6.14. O elemento COMBIN14 tem capacidade longitudinal ou torcional em aplicações 1-D, 2-D e 3-D. A opção de mola-amortecedor longitudinal é um elemento de tensão-compressão uniaxial com no máximo três graus de liberdade em cada um dos dois nós "i" e "j" - translações nas direções x, y e z. Não foram consideradas flexão ou torção.

O elemento mola-amortecedor não possui massa. A capacidade de atuar como mola ou amortecedor pode ser removida/adicionada do elemento.

Figura 6.14 – Elemento COMBIN14

A Figura 6.15 apresenta o detalhe do modelo de Winkler para o solo. Além disso pode ser observado um dos blocos de coroamento, parte das vigas de travamento e as estacas do bloco. Como de costume na prática de projetos de fundações profundas, apenas a interação entre o solo e as estacas foram consideradas, não sendo computada na análise a interação entre o solo e o bloco de coroamento, bem como entre o solo e as vigas de travamento.

Figura 6.15 - Interação Solo-Estacas - Hipótese de Winkler - em um dos Blocos de Coroamento

Para a determinação das rigidezes de mola para o modelo de Winkler foi utilizada uma rotina no Excel. As rigidezes horizontais das molas foram determinadas a cada 50 centímetros de profundidade multiplicando-se os coeficientes de reação horizontal em cada profundidade pela dimensão transversal da estaca e pelo comprimento de cada seguimento. As correlações propostas por Terzaghi (1955) na Tabela 3.2 em função da compacidade da areia com consideração da variação com a profundidade conforme a Equação 3-22, e da consistência da

argila conforme a Figura 3.4 foram utilizadas para a estimativa dos coeficientes de reação horizontal. A sondagem mista apresentada na Figura 5.20 foi utilizada como base.

A Tabela 6.4 apresenta a estratigrafia do subsolo no local bem como os parâmetros utilizados no modelo de Winkler para as estacas dos blocos de coroamento e das vigas de travamento.

Na Tabela 6.4 pode-se observar claramente a variação do diâmetro (D) com a profundidade das estacas. Conforme mostrado na mesma tabela, e em razão da topografía do terreno gerando a necessidade na região de aterro descrita na Figura 5.19, foram desprezadas as interações dos blocos e das vigas de travamento diretamente com o terreno. Essa última consideração trabalha favoravelmente à segurança para o caso de em razão de um evento natural (tal como chuva, cheia do rio etc.) ocorra a remoção da referida camada de aterro.

Em razão da predominância de esforços transversais no modelo deste trabalho, da elevada resistência da camada de assentamento das estacas, conforme a sondagem mista da Figura 5.20. Considerando também os enormes valores encontrados para k_v , e ainda que esta consideração representa uma significativa melhora nas condições de contorno do modelo. Considerou-se o engastamento das pontas das estacas para o modelo sem a utilização, portanto, de quaisquer valores de k_v .

Características Gerais			8	Estacas B	locos	Estacas Vigas			
Camada	Profundidade (m)	nh (MN/m3)*	D (m)	Kh (MN/m3)*	K (rigidez de mola) (MN/m)*	D (m)	Kh (MN/m3)*	K (rigidez de mola) (MN/m)*	
	0	0 6,60 N/A Desprezado Desprezado		N/A	Desprezado	Desprezado			
2 0	0,5	6,60	N/A	Desprezado	Desprezado	N/A	Desprezado	Desprezado	
loso	1	6,60	N/A	Desprezado	Desprezado	N/A	Desprezado	Desprezado	
ngil	1,5	6,60	N/A	Desprezado	Desprezado	0,41	24	8	
A Silt	2	6,60	N/A	Desprezado	Desprezado	0,41	32	10	
12100	2,5	6,60	N/A	Desprezado	Desprezado	0,41	40	13	
	3	N/A	N/A	Desprezado	Desorezado	0.41	11.68	4	
gila no:	3.5	N/A	N/A	Desprezado	Desprezado	0.41	11.68	4	
Ar S Are B	4	N/A	0.41	11.68	3.76	0.41	11.68	4	
	45	N/A	0,41	11.68	3,76	0,41	11.68	4	
	5	N/A	0,11	11.68	2.76	0,41	11.68	4	
	5	N/A	0,41	11,00	3,76	0,41	11.69		
	3,3	NJA	0,41	11,00	3,70	0,41	11,00	4	
	b	N/A	0,41	11,68	3,76	0,41	11,68	4	
a	6,5	N/A	0,41	11,68	3,76	0,41	11,68	4	
ec ra	7	N/A	0,41	11,68	3,76	0,41	11,68	4	
Soc	7,5	N/A	0,41	11,68	3,76	0,41	11,68	4	
Are	8	N/A	0,41	11,68	3,76	0,41	11,68	4	
to ,	8,5	N/A	0,41	11,68	3,76	0,41	11,68	4	
IIS III	9	N/A	0,41	11,68	3,76	0,41	11,68	4	
lig Ilig	9,5	N/A	0,41	11,68	3,76	0,41	11,68	4	
A	10	N/A	0,41	11,68	3,76	0,41	11,68	4	
	10,5	N/A	0,41	11,68	3,76	0,41	11,68	4	
	11	N/A	0,41	11,68	3,76	0,41	11,68	4	
	11,5	N/A	0,41	11,68	3,76	0,41	11,68	4	
	12	N/A	0,41	11,68	3,76	0,31	15,45	4	
ia	12,5	N/A	0,41	46,7	15,04	0,31	61,78	15,04	
D	13	N/A	0.41	46.7	15.04	0.31	61.78	15.04	
es	13.5	N/A	0.41	46.7	15.04	0.31	61.78	15.04	
enc	14	N/A	0.41	46.7	15.04	0.31	61.78	15.04	
Ar	14.5	N/A	0.31	61.8	15.04	0.31	61.78	15.04	
sito	15	N/A	0.31	61.8	15.04	0.31	61,78	15.04	
S E	15.5	N/A	0 31	61.8	15.04	0 31	61.78	15.04	
Arg	16	N/A	0 31	61.8	15.04	0,31	61.78	15.04	
	16.5	1759	0.31	936	22,01	0,31	936	229	
	17	17,59	0,31	965	220	0,31	965	220	
	175	17,55	0.21	902	2.0	0,31	902	2.5	
	19	17,55	0,31	1022	242	0,31	1822	242	
	19.5	17,35	0,51	1022	245	0,31	1022	245	
	10,3	17,39	0,51	1072	2.00	0,51	1079	2.00	
	105	17,39	0,51	1107	203	0,31	10/0	203	
	- 13'2	17,39	0.24	1107	209	0,31	1107	209	
cta	20	17,39	0.24	1163	2/0	0,51	1153	2/0	
ēd	20,5	17,59	0,31	1163	283	0,31	1103	283	
Lou Lou		17,59	0,31	1192	250	0,31	1192	290	
õ	<u>д,</u> 5	17,59	0,31	1220	297	0,31	1220	29/	
1ni	22	17,59	0,31	1249	304	N/A	N/A	N/A	
2 es	22,5	17,59	0,31	1277	311	N/A	N/A	N/A	
so.	23	17,59	0,31	1305	318	N/A	N/A	N/A	
U B	23,5	17,59	0,31	1334	325	N/A	N/A	N/A	
	24	17,59	0,31	1362	332	N/A	N/A	N/A	
ii.	24,5	17,59	0,31	1390	339	N/A	N/A	N/A	
ie.	25	17,59	0,31	1419	345	N/A	N/A	N/A	
4	25,5	17,59	0,31	1447	352	N/A	N/A	N/A	
	26	17,59	0,31	1476	359	N/A	N/A	N/A	
	26,5	17,59	0,31	1504	366	N/A	N/A	N/A	
	27	17,59	0,31	1532	373	N/A	N/A	N/A	
	27,5	17,59	0,31	1561	380	N/A	N/A	N/A	
	28	17,59	0,31	1589	387	N/A	N/A	N/A	
	28,5	17,59	0,31	1617	394	N/A	N/A	N/A	
	29	17,59	0,31	1646	401	N/A	N/A	N/A	

Tabela 6.4 – Rigidezes de Mola Modelo de Winkler

*1MN = 10⁶ N

6.3.4 CONSIDERAÇÃO DO AMORTECIMENTO ESTRUTURAL PARA ANÁLISE DINÂMICA

O amortecimento estrutural foi determinado conforme a Seção 4.6.2. De acordo com o proposto por Carril Jr. (2000), foi adotado o fator de amortecimento igual 0,7% ($\xi = 0,007$). Com os valores conhecidos de duas frequências naturais, tendo sido adotadas as duas primeiras conforme a prática usual (Rechtman, 2018), utilizando-se então a Equação 4-23 e a Equação 4-24 pode-se chegar aos valores de $\alpha \in \beta$. Os valores encontrados foram de $\alpha = 0,024967$ e $\beta = 0.001963$. A Figura 6.16 mostra as configurações da análise "transiente estrutural" no ANSYS, o que inclui os valores de $\alpha \in \beta$ utilizados.

D	etails of "Analysis Settings"	• U 🗆 ×						
8	Step Controls							
	Number Of Steps	3000.						
	Current Step Number	82.						
	Step End Time	1.64 i						
	Auto Time Stepping	0#						
	Define By	Time						
	Time Step	1,e-002 s						
	Time integration	On						
3	Options							
	Include Residual Vector	No						
ŧ	Output Controls							
Damping Controls								
	Eqv. Damping Ratio From Modal	No						
	Damping Ratio	0.						
	Stiffness Coefficient Define By	Direct Input						
	Stiffness Coefficient	1,953e-003						
	Mass Coefficient	2.4967e-002						
	Numerical Damping	Program Controlled						
	Numerical Damping Value	0.005						
÷	Analysis Data Management							
÷	Visibility							

Figura 6.16 - Configurações da Análise Transient Structural no ANSYS

Ainda na Figura 6.16, pode-se observar que a análise foi dividida em 3000 passos e que o passo de tempo adotado foi de 0,01 segundos.

CAPÍTULO 7 – APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

7.1 GENERALIDADES

Neste capítulo são apresentados e analisados os resultados das modelagens realizadas com a estrutura e a fundação da torre GTS 241/1 da travessia do Rio Amazonas situada na Linha de Transmissão de 500 kV Xingu-Jurupari.

De uma forma simplificada foram realizadas análises estáticas, modais e dinâmica não determinística da estrutura e da fundação da torre 241/1.

Nas análises estáticas foram obtidos os deslocamentos horizontais da estrutura da torre e das fundações. Além disso, também foram obtidos os esforços atuantes nas fundações. Com a análise modal foram obtidas as frequências naturais e seus respectivos modos de vibração. Já na análise dinâmica não determinística foi obtida a resposta da estrutura para a situação de máximo deslocamento translacional.

7.2 ANÁLISE ESTÁTICA

Esta seção apresenta os resultados das análises considerando as cargas de vento aplicadas na torre de forma estática (carregamento de vento de referência conforme definido na Seção 6.2.2 majorado por seu respectivo fator de rajada definido na Seção 6.2.3), além, naturalmente, dos esforços verticais.

As análises realizadas consideram dois tipos de abordagem para as estacas da fundação. interação solo-estrutura pela hipótese de Winkler (comportamento linear do solo) e utilização de curvas "p-y" para a consideração do comportamento não-linear do solo (somente para análise da estaca isolada).

Foram obtidos os deslocamentos horizontais na estrutura da torre para as situações de apoios engastados e interação solo-estrutura utilizando a hipótese de Winkler. Já os esforços nas fundações (axial, cortante e momento fletor), no caso dos apoios engastados foram obtidos no topo do bloco e na estaca mais carregada para o caso da hipótese de Winkler.

A estaca mais carregada quando considerada a hipótese de Winkler foi escolhida para ser analisada separadamente. Assim, para esta estaca especificamente, uma outra abordagem para a interação solo-estrutura foi aplicada - as curvas "p-y". Então foram obtidos para as condições linear e não-linear de interação solo-estrutura (hipótese de Winkler e curvas "p - y", respectivamente) os deslocamentos horizontais e os esforços atuantes (axial, cortante e momento fletor) na estaca mais carregada.

Para esta análise considerou-se a pior situação do carregamento estático, ou seja, o vento sinótico transversal (Hipótese 1). A Figura 7.1 apresenta o esquema com as cargas consideras

para o caso da análise estática. Os valores e as posições das forças aplicadas encontram-se detalhadas no Anexo B.

Figura 7.1 – Hipotese 1 – carregamentos considerados nas análises estáticas (*Todas as cargas incluem os fatores de segurança; **DW representa o peso próprio (dead weight). ***Todas as cargas estão em kgf.)

7.2.1 TOPO DA FUNDAÇÃO ENGASTADO

a) Deslocamentos horizontais na torre:

A Figura 7.2 apresenta os deslocamentos da estrutura na direção da carga crítica de vento (vento sinótico transversal). Nesta análise foi considerado o engastamento dos apoios, ou seja, foram considerados os deslocamentos nulos nos apoios da torre. Ressalta-se que esta ainda é a prática corrente no projeto de estruturas de linhas de transmissão, além de outros projetos na engenharia civil (e.g.: edifícios). Cabe mencionar, que na realidade, sabe-se que nenhum deslocamento é nulo como considerado nesta hipótese.

Figura 7.2 – Diagrama de Deslocamentos horizontais da Estrutura na Análise Estática com a Hipótese de Topo da Fundação Engastada.

O deslocamento máximo obtido para a situação de apoios engastados foi de 2,4689 m, no topo da estrutura, a 296 m de altura.

b) Esforços na fundação:

A Figura 7.3 indica a referência arbitrária para a determinação dos esforços nas fundações.

Figura 7.3 - Referência para Carga nas Fundações

A Tabela 7.1 apresenta os esforços nos pés da torre para hipótese de análise com o engastamento dos apoios.

PERNA	FZ (kN)*	FX (kN)	FY (kN)	FR (kN)	MSUM (kN.m)		
A	-10179	-1899,1	-970,54	2132,7	1249,5		
B	14156	-2352,3	1423,7	2749,6	1249,5		
с	-10179	-1899,1	970,56	2132,7	1249,5		
D	14156	-2352,2	-1423,8	2749,6	1249,5		
FZ = Força vertica	l na direção ortogo	onal do eixo Z;	ores positivos a tra	açau			
FX = Força transversal à torre na direção do eixo X;							
FY = Força transv	ersal à torre na dire	eção do eixo Y (lo	ngitudinal à linha)	;			
FR = Resultante d	las forças horizonta	ais;					
MSUM = Moment	to fletor resultante	5					

Tabela 7.1 - Esforços nos Apoios para a Situação de Vento Sinótico Transversal

Observa-se que duas pernas da torre (A e C) são comprimidas com esforços verticais de 10.179 kN enquanto as outras duas pernas (B e D) são tracionadas com cargas de 14.156 kN. Os esforços horizontais resultantes superam 2.000 kN em todos os pés da torre. Já o momento fletor devido aos esforços estáticos é de cerca de 1250 kN.m.

7.2.2 INTERAÇÃO SOLO-ESTRUTURA (HIPÓTESE DE WINKLER)

a) Deslocamentos horizontais na torre

A Figura 7.4 apresenta os deslocamentos da estrutura na direção da carga crítica de vento (vento sinótico transversal). Nesta análise foi considerada a interação solo-estrutura utilizando o modelo linear da hipótese de Winkler, ou seja, foram permitidos deslocamentos nos apoios.

Destaca-se que esta hipótese é mais realista que a hipótese adotada anteriormente com os apoios engastados, embora, ainda não represente a realidade.

Figura 7.4 – Deslocamento da Estrutura na Análise Estática com Interação Solo-estrutura

Foi obtido um deslocamento, no topo da estrutura, considerando a interação soloestrutura, de 2,6136 m.

b) Deslocamentos no topo das estacas:

A seguir, na Figura 7.5, estão apresentados os resultados para os valores dos deslocamentos no topo das estacas e em todos os nós dos blocos.

Figura 7.5 - Deslocamento no Topo das Estacas

A partir da análise dos deslocamentos no topo das estacas é possível observar que as estacas mais carregadas, utilizando a hipótese linear de Winkler, são as estacas mais internas do bloco relativo à perna D, e as mesmas estacas para o bloco relativo à perna B devido à simetria do sistema. Os deslocamentos dessas estacas são da ordem de 6,5 cm.

7.2.3 ANÁLISE DAS ESTACAS COM MAIORES DESLOCAMENTOS

Nesta seção as duas estacas (uma em cada bloco – B e D) que apresentaram maiores deslocamentos horizontais da fundação foram analisadas separadamente. Adotando a hipótese linear de Winkler e a hipótese não-linear abordada pelas curvas "p - y" foram obtidos os diagramas de deslocamentos horizontais e os diagramas de esforços atuantes (cortante e momento fletor) nas estacas mais carregadas da fundação da torre 241/1. Para o caso do comportamento não-linear foi utilizado software PileLAT.

A Figura 7.6 apresenta um detalhe do bloco D com destaque para a estaca que apresentou os maiores deslocamentos horizontais referentes a hipótese de carregamento com vento sinótico transversal (Hipótese 1).

Figura 7.6 – Detalhe da Estaca Analisada - Bloco D

As características das estacas consideradas estão apresentadas na Tabela 7.2.

	Tabela 7.2 -	Características	das Estacas com	Maiores	Deslocamentos
--	--------------	-----------------	-----------------	---------	---------------

fck (MPa)*	E (GPa)** (NBR6118:2014)	Diâmetro (cm)	Profundidade (m)	Momento de Inércia da Seção (m ⁴)	Rigidez à Flexão (MN.m ²)***
25	24	41	3,9 - 13,9	0,001387092	33,3
25	24	31	13,9 - 28,9	0,000453332	10,9

O fck é a resistência característica à compressão da argamassa da estaca aos 28 dias.*

 $1 \text{GPa} = 10^9 \text{N/m}^{2**}$

 $1 MN = 10^{6} N^{***}$

7.2.3.1 HIPÓTESE LINEAR DE WINKLER

a) Deslocamentos horizontais nas estacas mais carregadas

Os deslocamentos horizontais nas estacas, em metros, estão apresentados na Figura 7.7.

Figura 7.7 - Diagrama de Deslocamentos Horizontais nas Estacas (valores em metros)

O deslocamento horizontal máximo, observado no topo da estaca, foi de 65,867 mm, ou seja, cerca de 6,6 cm. Além disso a modelagem mostra que a partir da profundidade de 4 metros é possível verificar que praticamente não existe mais deslocamento horizontal.

b) Diagramas de esforços nas estacas com maiores deslocamentos:

A Figura 7.8 apresenta os diagramas de esforços axiais, cortantes e momento fletor nas

estacas.

Figura 7.8 – Diagramas de: (a) Esforço Axial (N); (b) Força Cortante (N); (c) Momento Fletor (N.m).

O esforço axial de compressão máximo ocorreu no topo da estaca e foi de 242 kN. O esforço cortante máximo também ocorreu no topo da estaca e foi da ordem de 800 kN. O momento fletor máximo, no topo da estaca, foi de cerca de 874 kN.m.

É possível observar que o esforço cortante e o momento fletor a partir da profundidade de cerca de 4 metros é praticamente desprezível. Já para o esforço axial esse comportamento não ocorre.

7.2.3.2 MODELO NÃO LINEAR (CURVAS P-Y)

Para elaboração do modelo não-linear abordada pelas curvas "p-y" através de elementos fintos com a consideração da estratificação do solo no software PileLAT foram utilizados os valores da resistência não-drenada ao cisalhamento das argilas associada ao N_{SPT} conforme Terzaghi et al (1996). A Tabela 7.3 exibe os valores propostos por Terzaghi et al (1996).

Tabela 7.3 - Valores da Resistência Não-drenada ao Cisalhamento (S_u) em Função do N_{SPT} (Terzaghi et al, 1996)

Consistência da Argila	NSPT	S_U (kPa)
Muito Mole	< 4	< 12
Mole	2 - 4	12 - 25
Média	4 - 8	25 - 50
Rija	8 - 15	50 - 100
Muito Rija	15 - 30	100 - 200
Dura	>30	> 200

Para as camadas de areia foi adotada a correlação entre os valores de N_{SPT} e o ângulo de atrito interno fornecida por Meyerhof (1956), mostrados na Tabela 7.4.

SPT	Grau de Compactação	Densidade Relativa (%)	Ângulo de Atrito (°)
< 4	Muito Fofa	< 20	< 30
4 - 10	Fofa	20 - 40	30 - 35
10 - 30	Compacta	40 - 60	35 - 40
30 - 50	Densa	60 - 80	40 - 45
> 50	Muito Densa	> 80	> 45

Tabela 7.4 - Correlação Entre N_{SPT}, Densidade Relativa e Ângulo de Atrito (Meyerhof, 1956)

Considerando que a Tabela 7.3 e a Tabela 7.4 fornecem faixas de valores, para a obtenção de valores intermediários de resistência não-drenada ao cisalhamento e ângulo de atrito interno foi considerada, para tais grandezas, sua variação linear em função do N_{SPT}. O primeiro valor de N_{SPT} do boletim de sondagem referente a cada camada foi utilizado para

obtenção dos valores na da resistência ao cisalhamento não drenado e do ângulo de atrito interno.

A Figura 7.9 apresenta a geometria da estaca mais carregada modelada no programa PileLAT. Devido a impossibilidade de definir diretamente no programa diâmetros distintos em um mesmo elemento adotou-se a estratégia de variar a rigidez a flexão do elemento. Assim, da cabeça da estaca até 10 m de seu comprimento utilizou-se a rigidez à flexão associada ao diâmetro de 41 cm e entre 10 m e 25 m do comprimento da estaca a rigidez à flexão pertinente ao diâmetro de 31 cm.

Figura 7.9 - Geometria da Estaca Mais Carregada com a Variação da Rigidez à Flexão Adotada

O modelo completo para a estaca mais carregada e as estratificações das camadas de solo consideradas na modelagem pelo software PileLAT são apresentadas na Figura 7.10.

Figura 7.10 - Modelo Utilizado no Software PileLAT

A Tabela 7.5 apresenta um resumo das propriedades e parâmetros geotécnicos utilizados para realizar a análise no programa PileLAT.

Tabela 7.5 -	Pro	priedades da	as Camadas	de I	Estratificaç	ção do	Solo A	plicadas	s no Modelo

Camada	Faixa de Profunidade * (m)	N _{SPT} de Referência***	Resistência ao Cisalhamento Não- drenado (kPa)**	Ângulo de Astrito Interno (°)	Curva p-y
Argila Silto Arenosa Rija	3,9 - 11,9	23	153	-	Argila Mole (API)
Argila Silto Arenos Dura	11,9 - 25,2	40	150	-	Argila Rija Sem Água (Reese)
Areia Siltosa	25, 2 - 34, 9	IMPENETRÁVEL	-	45	Areia (API)
Argila Arenosa	34,9 - 46,9	IMPENETRÁVEL	200	-	Argila Rija Sem Água (Reese)

* Profundidade real da cama. As camadas utilizdas nos modelos consideram como nível de referência o do topo das estacas. 1kN = 10³ N **

Valor de N_{SPT} utilizado para determinar as propriedades da camada conforme Terzaghi (1996) ou Meyerhoff (1956)***

a) Deslocamentos horizontais nas estacas mais carregadas

A Figura 7.11 apresenta o diagrama de deslocamentos horizontais nas estacas.

Figura 7.11 - Digrama de Deflexão da Estaca (PileLAT)

O deslocamento máximo observado foi de 54,46mm, próximo de 5,5 cm. É possível observar que os deslocamentos horizontais são praticamente nulos a partir de 4 metros de profundidade,

b) Diagrama de esforços na estaca mais carregada:

O software PileLAT não fornece diagramas de esforços axiais, portanto, para as análises da estaca isolada só foram apresentados os esforços cortantes e momentos fletores.

O esforço axial de compressão máximo pode ser obtido, sendo seu valor observado no nível do terreno e de 242,2 kN.

A Figura 7.12 apresenta o diagrama de esforços cortantes na estaca mais carregada.

Figura 7.12 - Diagrama de Esforço Cortante para a Estaca Mais Carregada

O esforço cortante máximo na estaca mais carregada é de 800,97 kN e ocorre no topo desta.

A Figura 7.11 apresenta o diagrama de momentos fletores na estaca mais carregada.

Figura 7.13 - Diagrama de Momentos Fletores para a Estaca Mais Carregada

O momento fletor máximo na estaca mais carregada é de -966,96 kN.m e ocorre no topo desta.

As curvas p-y foram geradas de metro a metro e estão apresentadas no Anexo D.

7.3 ANÁLISE MODAL

Esta seção apresenta os resultados das análises modais. As análises realizadas consideram dois tipos de abordagem para apoios da torre: engastamento e interação soloestrutura (neste caso, somente a hipótese de Winkler).

São apresentadas os modos de vibração e as frequências naturais mais relevantes para a análise dos modelos.

7.3.1 MODOS DE VIBRAÇÃO

A Figura 7.14 apresenta os seis primeiros modos de vibração para o modelo de torre com o engastamento dos apoios.

Figura 7.14 – Diagramas dos Seis Primeiros Modos de Vibração Considerando o Topo da Fundação engastado.

Pode-se observar que no primeiro e terceiro modos de vibração ocorre flexão global em torno do eixo "Y", enquanto que no segundo e quarto a flexão global ocorre em torno de "X". O quinto modo apresenta uma predominância do efeito de torção em torno do eixo "Z" mais
próximo à base da torre e, finalmente, o sexto modo apresenta uma predominância da flexão global em torno de "Y" com uma contribuição menos significativa da torção em torno de "Z" próxima à base da torre.

A Figura 7.15 apresenta um gráfico das seis primeiras frequências naturais e seus respectivos modos de vibração associados para o modelo de torre com o topo da fundação engastado.

Figura 7.15 - Frequência versus Modos de Vibração para Pés Engastados

Observa-se a frequência de 0,56741Hz associada ao primeiro modo de vibração, 0,56789Hz associada ao segundo, 1,3376Hz associada ao terceiro, 1,3436Hz associada ao quarto, 1,7138Hz associada ao quinto e 2,2077Hz associada ao sexto modo de vibração.

Já para o modelo de torre com a consideração das fundações e da interação solo-estrutura os seis primeiros modos de vibração são apresentados na Figura 7.16,

Figura 7.16 - Seis Primeiros Modos de Vibração Para o Modelo com Interação Solo-Estrutura

Para o modelo com a consideração das fundações e da interação solo-estrutura pode-se observar nos primeiros quatro modos um comportamento bastante semelhante ao modelo com o engastamento do topo das fundações, sendo observados flexão global em torno do eixo "Y' no primeiro e terceiro modos de vibração e flexão global ocorre em torno de "X" no segundo e quarto. Para o quinto modo observa-se uma aproximação maior de efeito de torção em torno de "Z" da base da torre. Neste caso, percebe-se uma mudança mais significativa para o sexto modo que passa a apresentar torção local em torno de "Z" associada à parte inferior da torre e principalmente junto às fundações.

A Figura 7.17 apresenta um gráfico das frequências naturais e seus respectivos modos de vibração associados.

Figura 7.17 - Frequência vs Modos de Vibração com Interação Solo-Estrutura

Observa-se a frequência de 0,54981Hz associada ao primeiro modo de vibração, 0,55023 associada ao segundo, 1,0583Hz associada ao terceiro, 1,0601Hz associada ao quarto, 1,2190Hz associada ao quinto e 1,3113Hz associada ao sexto modo de vibração.

7.3.2 FREQUÊNCIAS NATURAIS

Foram obtidas as seis primeiras frequências naturais da estrutura da torre para as situações de topo das fundações engastado e interação solo-estrutura utilizando a hipótese de Winkler.

Cabe ressaltar que o conhecimento dessas frequências é importante para a determinação da faixa de frequência do espectro de potência, sendo que o primeiro modo de vibração também é utilizado para determinar o sentido de aplicação do carregamento dinâmico de forma a tentar obter um possível deslocamento ressonante.

Além disso, os valores das duas primeiras frequências naturais são utilizados para a determinação dos coeficientes α e β para obtenção da Matriz de Amortecimento Rayleigh, de forma a considerar o amortecimento estrutural, conforme a Seção 4.6.2.

A Tabela 7.6 apresenta as frequências relativas aos 6 primeiros modos de vibração para ambas as estratégias de modelagem.

Modo de Vibração	Engastamento dos Apoios	Interação Solo- Estrutura	Diferença Percen-
	Frequência (Hz)	Frequência (Hz)	ses
1	0,56741	0,54981	3,10%
2	0,56789	0,55023	3,11%
3	1,3376	1,0583	20,88%
4	1,3436	1,0601	21,10%
5	1,7138	1,2190	28,87%
6	2,2077	1,3113	40,60%

Tabela 7.6 - Frequências Naturais para Ambos as Estratégias de Modelagem

Pode-se observar que para os dois primeiros modos de vibração as frequências naturais para as duas estratégias são bastante próximas. Isso ocorre porque os dois primeiros modos de vibração são correspondentes, ou seja, a estrutura se desloca da mesma forma em ambas as estratégias de modelagem. Já para os outros existem diferenças nas deformações observadas em cada uma das estratégias de modelagem.

7.4 ANÁLISE DINÂMICA

Para a análise dinâmica foi utilizado o módulo "Transient Structural" do ANSYS[®]. Utilizou-se uma rotina do software MATLAB[®] para geração dos carregamentos dinâmicos nãodeterminísticos conforme demonstrado por Rechtman (2018). Foram aplicadas 10 séries de carregamento aleatório e escolhida como resposta aquela com maior valor para o deslocamento máximo.

Os deslocamentos obtidos ao longo do tempo, no topo da torre (296m) para a série de carregamento que produziu o maior deslocamento podem ser observados na Figura 7.18.

Figura 7.18 - Resposta do Deslocamento Máximo

O valor do deslocamento máximo observado foi de 2,6863m, tendo ocorrido em um tempo t=0,82s.

A IEC 60826:2017 estabelece que para determinação da resposta dinâmica na direção do vento, a velocidade de projeto pode ser definida por uma velocidade média atuando durante 10 minutos (600 segundos). Entretanto, em razão do poder computacional limitado disponível para a realização do presente trabalho, o tempo adotado para a análise foi de 1 min (60 segundos) de forma a viabilizar sua execução.

O deslocamento máximo ocorrido para t = 0,82s é mostrado na Figura 7.19.

Figura 7.19 - Deslocamento máximo para t = 0.82s.

CAPÍTULO 8 – CONCLUSÕES

Uma grande torre de suspensão, constituída de perfis tubulares com altura total de 296 metros e distância entre pernas de 48 metros, foi necessária para possibilitar a execução da travessia do Rio Amazonas para a Linha de Transmissão de 500 kV Xingu-Jurupari, no município de Almeirim no estado do Pará. A Torre está situada no km 238 da linha e a travessia possui uma extensão total de 2108 metros.

A fundação da torre é constituída por quatro blocos de coroamento com 36 estacas raiz cada conectados por vigas de travamento, sendo que estas vigas também possuem estacas raiz como fundação (8 estacas cada). As estacas dos blocos têm diâmetro de 41 cm até os 10 metros de comprimento e de 31 cm dos 10 metros até o comprimento final, que é de 25 metros. Já as estacas das vigas só diferem no comprimento total, que é de 20 metros.

As fundações foram instaladas em um subsolo aluvionar que, como é característico dessa região, apresenta nas camadas superiores solos de granulometria fina, com uma camada de silte areno argiloso de 0 a 2,7m e uma camada de argila silto arenosa dos 2,7 aos 16,11 metros, que, após uma pequena camada de arenito dos 16,12 aos 17 metros são procedidas por uma camada de areia muito compacta até cerca de 80 metros, onde se interromperam as sondagens realizadas.

Foi construído um modelo de Elementos Fintos para o sistema estrutura-fundação-solo e efetuadas análises estáticas, modal e dinâmica.

A hipótese de carregamento considerando o vento sinótico transversal (hipótese 1) atuando na estrutura foi a que gerou os maiores esforços e deslocamentos no sistema soloestrutura.

Nas análises estáticas foram aplicadas as cargas estáticas equivalentes de vento conforme a IEC 60826:2017 e avaliados o comportamento da estrutura e das fundações. Para a estrutura foi avaliado o deslocamento máximo nas hipóteses do engastamento doa apoios e com a consideração da interação solo-estrutura através do Modelo de Winkler. Para as fundações foram analisados os deslocamentos horizontais nos apoios para as mesmas hipóteses anteriores. Além disso, as estacas que apresentaram maiores deslocamentos foram analisadas separadamente considerando comportamento não-linear através da utilização de curvas "p-y".

Para a análise modal foram consideradas as hipóteses de engastamento dos apoios e da interação solo-estrutura para a determinação das seis primeiras frequências naturais e seus respectivos modos de vibração, de forma a avaliar a variação da rigidez em ambas as hipóteses e se obter parâmetros para a análise dinâmica.

Na análise dinâmica foi aplicado um carregamento dinâmico aleatório de vento e obtido o histórico de deslocamento máximo da estrutura.

8.1 ANÁLISE ESTÁTICA

8.1.1 DESLOCAMENTO NA ESTRUTURA

A partir da hipótese 1, com carregamento de vento sinótico transversal, foram gerados e aplicados carregamentos estáticos de vento e obtidos os deslocamentos translacionais horizontais máximos no topo da estrutura.

O deslocamento máximo obtido para o modelo da torre com o engastamento dos apoios foi de 2,4689m, já para a modelagem com a considerações dos efeitos da interação solo-estrutura, com a hipótese de Winkler, foi de 2,6136 m, ou seja, uma diferença de 0,1447 ou cerca de 5,86%.

Considerando a variação dos deslocamentos máximos obtidos para as duas hipóteses, pode-se concluir que a modelagem das fundações e a consideração de sua interação com o solo resulta em valores de deslocamentos superiores ao modelo com a consideração do engastamento dos apoios. Naturalmente, isto comprova a maior rigidez do modelo de apoios engastados que, portanto, subestima os valores dos deslocamentos.

Apesar de a diferença de aproximadamente 14,5 cm não aparentar ser significativa, cabe ressaltar que o perfil do solo estudado possui elevada rigidez. Estruturas em solos menos rígidos poderiam apresentar diferenças bem mais significativas.

As normas especificas de linhas de transmissão não tratam de um valor para o deslocamento máximo admissível, entretanto, Vinay et al. (2014) e Jusoh et al. (2017) sugerem a consideração de 1% da altura total da estrutura. Fundamentando-se nesse critério o limite máximo de deslocamento admissível seria de 2,96 m que é atendido em ambas as hipóteses consideradas para a construção do modelo.

8.1.2 ESTACA ISOLADA

O comportamento da estaca isolada foi analisado em duas hipóteses, Modelo de Winkler (comportamento linear do solo) e com a consideração do comportamento não-linear do solo através da utilização de curvas p-y.

Foram analisados em ambas as situações o valor do deslocamento horizontal no topo da estaca mais carregada, sendo que para o Modelo de Winkler este foi de 65,867 mm enquanto que para análise com a utilização de curvas p-y o deslocamento no topo da estaca foi de 54,46 mm.

Considerando que o valor do deslocamento obtido segundo Winkler foi aproximadamente 11,5 mm, ou cerca de 21% maior, pode-se dizer que este resultado está compatível com o previsto por Poulos (1980), onde o modelo de Winkler é favorável à segurança e superestima os deslocamentos.

Cabe ressaltar que um modelo mais refinado como o não-linear do solo deveria ter seus parâmetros definidos por ensaios mais sofisticados (e.g.: cone, palheta, triaxial, etc.). No caso do presente trabalho, para a obtenção dos coeficientes de reação horizontal, foram utilizadas correlações entre o N_{SPT} e os parâmetros de resistência ao cisalhamento do solo.

Broms (1964) estabelece para o deslocamento máximo admissível da estaca o valor de 20% do diâmetro. Considerando que o deslocamento máximo ocorre no topo da estaca onde o diâmetro é de 41 cm, temos então, conforme o critério de Broms (1964), um deslocamento máximo admissível de 8,2cm ou 82mm. Conclui-se então, que os valores dos deslocamentos obtidos nas duas hipóteses se encontram dentro do limite máximo admissível estabelecido por Broms (1964).

8.2 ANÁLISE MODAL

Através da análise modal foram obtidas as frequências naturais da estrutura e seus respectivos modos de vibração para ambas as situações, apoios engastados e consideração da interação solo-estrutura com a modelagem das fundações. A frequência fundamental encontrada com o engastamento dos apoios foi de 0,56741Hz, enquanto que, com a consideração da interação solo-estrutura foi de 0,54981Hz. A análise da frequência natural é de especial importância para estruturas que possuem grande esbeltez conforme Rechtman (2018).

A modelagem da torre com o engastamento dos apoios apresentou uma rigidez superior em relação à modelagem com a consideração dos efeitos da interação solo-estrutura e das fundações. Isso demonstra que a estratégia de modelagem utilizada influenciou nos valores das frequências naturais dos modelos analisados, especialmente para as três últimas frequências obtidas que apresentaram uma redução bastante significativa: 21,1%, 28,9% e 40,6% respectivamente. Cabe mencionar também que foi observada uma mudança significativa na natureza da deformação da estrutura relativa ao sexto modo de vibração entre as análises com o topo das fundações engastados e com a consideração da interação solo-estrutura. Na primeira hipótese o sexto modo apresentou um efeito de flexão global em torno do eixo "Y" associado a um efeito menos significativo de torção local em torno do eixo "Z" próximo à base da estrutura, já na segunda hipótese observou-se o desparecimento do efeito flexão global na estrutura e um deslocamento do efeito de torção para as fundações, sendo este um indicativo claro da redução significativa da rigidez associada aos apoios, em razão da consideração da interação solo-estrutura. A realização da análise modal é de suma importância, uma vez que, conforme Rechtman (2018), as faixas de frequências no espectro de potência utilizado para a geração das séries de carregamento não determinísticas representativas do vento devem absorver as principais frequências da estrutura.

8.3 ANÁLISE DINÂMICA NÃO-DETERMINÍSTICA

Feitas as devidas ressalvas de que o vento é apenas um dos efeitos dinâmicos que atuam na estrutura e que a natureza aleatória dos carregamentos não determinísticos considerados pode não ser representativa da realidade deste efeito.

Tendo sido aplicadas dez séries de carregamentos aleatórios de vento e considerada a resposta com o maior valor para o máximo deslocamento translacional na estrutura. Foi encontrado um deslocamento máximo (valor de pico da resposta) de 2,6862m enquanto que os valores dos deslocamentos máximos foram de 2,4689m e 2,6136m para as análises estáticas com engastamento dos apoios e consideração das fundações e da interação solo-estrutura, respectivamente.

Apesar de o valor de pico da resposta para o deslocamento máximo ser ligeiramente superior aos valores estáticos, a diferença é menor que 1%. Pode-se então concluir que a consideração do fator de rajada para a análise estática de vento conforme a Seção 6.2.3 é apropriada, e que a maior variação em relação à análise estática com o engastamento dos apoios (aproximadamente 21,73cm ou 8,8%) ocorre devido à consideração das fundações e sua interação com o solo, tal qual como ocorrido para as análises estáticas.

O deslocamento máximo observado na resposta dinâmica também se encontra dentro do limite de 1% da altura total da estrutura, conforme sugerido por Vinay et al. (2014) e Jusoh et al. (2017).

8.4 DIFICULDADES E SUGESTÕES PARA FUTUROS TRABALHOS

A dificuldade mais significativa no curso do desenvolvimento do presente trabalho foi o enorme custo computacional necessário para a elaboração e solução dos modelos de Elementos Finitos, em especial relativos a consideração do modelo contínuo de solo e às análises dependentes do tempo.

A consideração do solo como meio contínuo viabilizaria a análise das características das tensões no mesmo, a modelagem completa de seu comportamento elastoplástico e da degradação de suas propriedades sob carregamentos cíclicos conforme abordado na revisão teórica deste trabalho.

Uma análise no domínio da frequência das séries de carregamento, aplicadas na análise

dinâmica não determinística, através do Método da Transformada Rápida de Fourier para determinar a densidade espectral das cargas de vento e verificar em que faixa de frequência acontece a maior parte da transferência de energia do sistema, de forma a apurar a possível ocorrência do fenômeno de ressonância.

Outra extensão natural para este trabalho seria a consideração no estudo de caso dos demais carregamentos de natureza dinâmica que atuam sobre estruturas de linhas aéreas de transmissão. Pode-se ainda sugerir a consideração de eventos excepcionais, como a colisão de embarcações, por exemplo, dos quais já se tem relato de ocorrência em estrutura de travessia na região amazônica.

Uma sugestão para futuros trabalhos, seria alimentar os modelos computacionais com ensaios mais sofisticados, por exemplo, cone, paleta, vane test, ensaios pressiométricos, triaxial, etc, pois esses ensaios resultam em parâmetros mais confiáveis do que as correlações existentes com simples sondagens com medida de N_{SPT}.

REFERÊNCIAS BIBLIOGRÁFICAS

Agaiby S.W. Kulhway Fred H and Trautmann C.H. 1992 – Experimental Study of Drained Lateral Behavior of Drilled Shafts During Static and Cyclic Loading, EPRI Research Report TR-100223, EL-1493-4, January.

Alvarenga. B. Máximo A., 2000 – Física, Volume Único - Editora Scipione - 1 ed. - - ISBN 85-262-3018-2.

Andersen K., 2009 – Bearing Capacity Under Cyclic Loading – Offshore, Along the Coast, and on Land. The 21st Bjerrum Lecture presented in Oslo, 23 November 2007, Canadian Geotechnical Journal, 46(5), pp 513-535.

Andersen K. 1991 – Foundation Design of Offshore gravity structures, Chapter 4 in "Cyclic Loads on soils", Ed. M.P. O'Reilly and S.F. Brown, Publication by Blackie and Son Ltd.

Audibert J. M. E. and Dover A. R. 1982 – "Discussion of "Pile load tests: Cyclic loads and varying load rates" by L. M. Kraft, E. A. Verner, and W. R. Cox." J. Geotech. Engr. Div., 108(3), 501–505.

Bathe, K. J., 2006 – Finite Element Procedures. Cambridge, MA: Klaus-Jürgen Bathe. ISBN 097900490X.

Bathe K. J., 1982 – Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Bea R. G. Audibert, J. M. E. and Dover, A. R., 1980 – 11 Dynamic Response of Laterally and Axially Loaded Piles." 12th OTC Conf., Houston, Paper OTC 3749, pp.129-139.

Brandenberg S. J. Bellana N. and Shantz T., 2010 – Shear Wave Velocity as a Statistical Function of Standard Penetration Test Resistance and Vertical Effective Stress at Caltrans Bridge Sites, Soil Dyn. Earthquake Eng., 30, 1026-1035.

Bratosin Dinu and Sireteanu T., 2002 – Hysteric Damping Modelling by Nonlinear Kelvin-Voigt Model, Proceeding of the Romanian Academy, Series 4 Volume1 No.3, pp-6.

Berre, T. and Bjerrum, L, 1973 – "Shear Strength of Normally Consolidated Clays", Proceedings, 8th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 39-49.

Boggs D. and Dragovitch, J. – The Nature of Wind Loads and Wind Response SP-240-2

Blessmann, J. 1995 – O Vento na Engenharia Estrutural. Porto Alegre: Editora da Universidade Federal do Rio Grande (UFRGS), 166p.

Briaud J. and Garland F. 1985 – Loading Rate Method for Pile Response in Clay, Journal of Geotechnical and Engineering, Vol. 111, No. 3, pp. 319-335.

Bozorgnia and Bartero, 2004 – Ed. Earthquake Engineering, CRC Press, Boca Raton, Florida, USA.

Cauzillo B. A. and Rendina R. 1980 – Dynamic Behaviour of Overhead Line Foundations, Proceeding CIGRE, Paris session SC 22-07.

CEATI 3339, 2013 – Benchmark Study of a Line Modelled in ADINA, Memorial University of Newfoundland, CEATI 3339.

Chen, Bo, Guo, Wei-hua, Li, Peng-yun and Xe, Wenping 2015 – Dynamic Responses and Vibration Controls of Tower-Line System: A State of the Art Review, The Scientific World Journal,

CIGRE TB 515, 2012 – Mechanical Security of Overhead Lines,

CIGRE SC B2 WG23, 2016 – Dynamic Load Effects on Overhead Lines - Impact on Foundations, August.

Clarke M. J. Richards. David and Clutterbuck. D 2006 – Measured Dynamic Responses of Electricity Transmission Towers Following Controlled Broken wire Events, Proceeding CIGRE, Paris Session, SC B2-313, 8p.

Collier C. J. and Elnashai A. S., 2001 – A Procedure for Combining Vertical and Horizontal Seismic Effects, Journal of Earthquake Engineering, Vol. 5, p521.

Das B. M., 1994 – Principles of Geotechnical Engineering. PWS Publishing Company.

Dasgupta S. P. 2006 – Earthquake and Geotechnical Engineering, Chapter 7, GT 101.

Davenport A. G., 1980 – "Gust Response Factors For Transmission Line Loading", Proceedings of the 5th International Conference on Wind Engineering, Colorado State University, Oxford, USA.

Davenport A.G., 1967 – "Gust Loading Factors," Journal of the Structural Division ASCE, 93(ST3) pp. 11-34.

Drucker D. C. and Prager W. (1952) – Soil Mechanics and Plastic Analysis for Limit Design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165.

Eze E. O. and Orie O. U., 2010 – Earthquake Induced Damage, A Review, Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 1 (2): 209-215.

Facciorusso J. 2006 – Liquefaction Risk in Harbour Area, Presentation made during an International Doctoral Course on "Risk Management on the Built Environment" Florence, <u>http://geotecnica.dicea.unifi.it/facciorusso_dott_2006.pdf</u>.

Garner, M.P., 2007 – Loading Rate Effects on Axial Capacity of Piles in Clays, Master's Thesis, Brigham Young University.

Gazetas G., 1991 – Formulas and Charts for Impedances of Surface and Embedded Foundations, Journal of Geotechnical Engineering, Vol.117, No.9, 1364-1381.

Gomes Correia A. e Santos J. A. 1994 – "Métodos de Dimensionamento de Uma Estaca Isolada Sob Acções Horizontais". Revista Geotecnia da Sociedade Portuguesa de Geotecnia, 71, pp. 51-64.

Gontijo C. R., 1994 – Cálculo de Torres para Linhas de Transmissão – Belo Horizonte: Instituto de Engenharia Aplicada Editora, 132p.

Gudehus G. and Hettler A., 1981 – Cyclic and Monotonic Model Tests in Sands, X ICSMFE, Stockholm, 3: 211-214.

Haldar A. K. Swamidas A. S. J. Reddy D.V. and Arockisamy M., 1977 – Dynamic Ice-Water-Soil -Structure Interaction of Offshore Tower Including Nonlinear Soil Behaviour, Proceeding Offshore Technology Conference, OTC #2907, Houston.

Hardin, B.O. and Richart, F. E., 1963 – Elastic Wave Velocities in Granular Soils, Journal of the Soil Mechanics and Foundation Division, ASCE Volume 89, No. SM1, February.

Hashiguchi K., 1989 – Subloading Surface Model in Unconventional Plasticity. Int. J. Solids Struct. 25, 917–945.

Havard D. G., 2003 – "Dynamic Loads on Transmission Line Structures During Galloping – Field Data and Elastic Analysis", Fifth International Symposium on Cable Dynamics, Santa Margherita, Italy, 15-18 Sept.

Hetenyi M., 1946 – Beams on Elastic Foundations. University of Michigan Press, Ann Arbor.

Holmes J. D., 2007 – "Wind Loading of Structures". Wind Loads on Structures.

Hunt R. E., 1984 – Geotechnical engineering investigation manual. McGrawHill, NewYork.

Hyde A., Anderson W. and Robinson S., 1998 – "Vertical Load Tests in Different Loading Speeds on Model Piles", Proceedings, Second International Statnamic Seminar, Tokyo, Japan, pp. 365-371.

Idriss I. M., Dobry R. and Singh R. D., 1978 – "Nonlinear Behavior of Soft Clays During Cyclic Loading"; Journal of Geotechnical Engineering, ASCE, GT12: 1427-1447.

Imai T. Tonouchi K., 1982 – Correlation of N Value With S-Wave Velocity and Shear Modulus. Proc. 2nd European Symp. on Penetration Testing. Amsterdam.

International Electrotechnical Commission Standard 60826, 2017 – Overhead Transmission Line – Design Criteria, Geneva, Switzerland, ISBN 978-2-8322-3884-4.

Jak^{*}se J. Al Harash M.T. and McClure G., 2001 – Numerical Modelling of Snow-Shedding Effects on a 110 Kv Overhead Power Line in Slovenia, in Proceedings of the 11th International Offshore and Polar Engineering Conference, pp. 690–694, Stavanger, Norway, June.

Joppert I., 2007 – Fundações e Contenções de Edifícios: Qualidade Total na Gestão do Projeto e Execução. 1. ed. São Paulo, Pini.

Jusoh H. A. Ghulman T. S. Mandourah C. C. Tan., 2017 – Loading Analysis of a Research And Management (IJERM) ISSN: 2349- 2058, Volume-04, Issue-10, October.

Kalman T. Farzaneh M. and McClure G., 2007 – Numerical Analysis of The Dynamic Effects of Shock-Load-Induced Ice Shedding on Overhead Ground Wires, Computers and Structures, vol. 85, no. 7-8, pp. 375–384.

Kraft L.M., Cox W. R. and Verner E.A., 1981 – Pile Load Tests - Cyclic Loads and Varying Load Tests. ASCE J. Geotech. Eng. Div. 107(1), 1–19.

Kramer S., 1996 – Geotechnical Earthquake Engineering, Prentice Hall.

Kulhway F. H. and Mayne P.W., 1990 – Manual on Estimating Soil Properties for Foundation Design, EPRI research Report EL-6800, August.

Leroueil S. and Marques M., 1996 – "Importance of Strain Rate and Temperature Effects in Geotechnical Engineering", Geotechnical Special Publication, No. 61, pp. 1-60.

Litkouhi S. and T. J. Poskitt 1980 – Damping Constants for Pile Driveability Calculations. Geotéchnique 30(1), 77–86.

Lin S.L. Liao, J.C., 1999 – Permanent Strains of piles in sand due to cyclic lateral loads. Journal of Geotechnical and Geoenvironmental Engineering, 125 (9), 798-802.

Lysmer J. Udaka T. Seed H. and Hwang R., 1974 – LUSH - A Computer Program for Complex Response Analysis of Soil-Structure Systems Rep. EERC 74-4. Berkeley, California.

Lysmer J., Udaka T. Tsai C. F. and Seed H. B., 1975 – "FLUSH: A Computer Program for Approximate 3-D Analysis ff Soil-Structure Interaction Problems," EERC Report No. EERC-75-30, Earthquake Engineering Research Center, University of California, Berkeley, CA.

Maheshwari B. K. Truman K. Z. El Naggar M. H. and Gould P. L., 2004 – "Three Dimensional Nonlinear Analysis for Seismic Soil-Pile-Structure Interaction." Soil Dynamics and Earthquake Engineering 24, 343-356.

Matasovic N. Kavazanjian E. Jr., 1998 – Cyclic Characterisation of Oil Landfill Solid Waste. J Geotech Geoenviron Eng ASCE, 124(3):197–210.

Meyerhof G. G., 1956 – Penetration Tests and Bearing Capacity of Cohesionless Soils. Journal of the Soil Mechanics Division, ASCE, Vol. 82, SM1, P. 1-12.

McClure G. and Tinwai R., 1987 – Mathematical Modeling of the Transient Response of Electric Transmission Lines Due to Conductor Breakage." Computer and Structures, 26(1/2): 41-56.

McClure G. and Lapointe M., 2003 – Modeling the Structural Dynamic Response of Overhead Transmission M., lines, Computers and Structures, vol. 81, no. 8–11, pp. 825–834.

Motta J. N. M. MSc Rechtman M. S. Souza R. M., 2014 – Amazonas River Crossing Tower, Prying Connections Pathology, SNC Lavalin and UFF.

Nader J. J., 1993 – Modelos, Elastoplásticos para Solos: O Cam-Clay e Sua Aplicação a Diferentes Trajetórias de Tensão. Dissertação de Mestrado em Engenharia Civil, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 99p.

Nguyen Q. H., 2008 – Rapid Load Testing of Piles in Sand, Effects Of Loading Rates and Excess Pore Pressure, Master's thesis, Technical University of Delft.

Nguyen D. Azéma E. Sornay P. and Radjai F., 2015 – Stress-strain behavior of sand at high strain rates, International Journal of Impact Engineering, 0.1016/j.ijimpeng.2012.03.004, 192-213.

Novak M., 1974 – Dynamic Stiffness and Damping of Piles, Canadian Geotechnical Journal, 1974, 11(4): 574-598, 10.1139/t74-059.

Nguyen Q. H., 2008 – Rapid Load Testing of Piles in Sand, effects of loading rates and excess pore pressure, Master's thesis, Technical University of Delft.

Nguyen D. Azéma E. Sornay P. and Radjai F., 2015 – Stress-strain behavior of sand at high strain rates, International Journal of Impact Engineering, 10.1016/j.ijimpeng.2012.03.004, 192-213.

Novak M., 1974 – Dynamic Stiffness and Damping of Piles, Canadian Geotechnical Journal, 1974, 11(4): 574-598, 10.1139/t74-059.

Peck R. B. Hanson W. E. Thornburn T. H., 1974 – Foundation Engineering, 2nd edn. Wiley & Sons Inc., New York.

Poulos H. G., 1980 – Influence of Cyclic Loads on Pile Foundation.

Quental J. C., 2008 – Comportamento Geomecânico dos Solos de Fundações das Torres da Linha de Transmissão Recife II/Bongi, Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Engenharia Civil, 2008.

Rakic D. Zivkovic M. Slavkovic R. and Kojic, M., 2008 – Stress Integration for the Drucker-Prager Material Model Without Hardening Using the Incremental Plasticity Theory, Journal of the Serbian Society for Computational Mechanics, Vol. 2, No. 1, 80-89.

Randolph M. and Gouvernec S., 2011 – Offshore Geotechnical Enigineering. ISBN13: 978-0-415-47744-4, 1. Edition. Spon Press, 2011.

Rechtman, M. S., 2018 – Análise Dinâmica Não Determinística de Torres de Telecomunicações Submetidas à Ação do Vento – Dissertação Mestreado – Universidade Federal Fluminense, Niterói.

Reyolando M. L. R. F. Brasil, 2015 – Introdução à Dinâmica das Estruturas - 2ª edição, Blucher.

Roscoe K.H. and Burland J. B., 1968 – On the generalized stress-strain behavior of 'wet' clay, Eng. plasticity, Cambridge Univ. Press, 535-609.

Schneider J.A. Hoyos, L. Jr. Mayne P. W. Macari E. J. and Rix G.J., 1999 – Field and Laboratory Measurements of Dynamic Shear Modulus of Piedmont Residual Soils, Behavioral Characteristics of Residual Soils, GSP 92, ASCE, Reston, VA, pp. 12-25.

Seed H. B. and Idriss I. M., 1970 – "Simplified Procedure for Evaluating Soil Liquefaction Potential", J. Soil Mech. Found. Div. ASCE, SM9, pp.1249-1273.

Seed H. B. Idriss I. M. and Arango I., 1983 – Evaluation Of Liquefaction Potential Using Field Performance Data, ASCE J. Geotech. Eng. Div. 109 3 pp. 458–482.

Sheahan, T. C. Ladd C. C. and Germaine, J. T., 1996 – "Rate-Dependent Undrained Shear Behavior of Saturated Clay." J. Geotech. Eng., 122(2), 99–108.

Shimpi R., 1996 – Dynamic Gust Response Factors for Transmission Line Structures, MS Thesis, Texas A & M University, Lubbock, Texas.

Terzaghi K. V. Peck R. B., 1967 - Soil Mechanics in Engineering Practice, 2nd edn. Wiley, New York.

Terzaghi K. V. Peck R. B. Mesri G., 1996 – Soil mechanics in engineering practice, 3rd edn. Wiley, New York.

Terzaghi, K. V., 1955 – "Evaluation of Coefficient of Subgrade Reaction," Geotechnique, 5(4): 297-326.

George T., 1996 – "Identification of Transfer Functions for Wind Induced Pressures on Prismatic Buildings," PhD Dissertaion, Department of Civil Engineering, Texas Tech University.

Timoshenko S. and Goodier J. N., 1951 – Theory of Elasticity. 2nd Edition, McGraw-Hill, New York, Toronto, London.

Veletsos A. S. and Meek J., 1974 – Dynamic Behavior of Building Foundation system, Earthquake Engineering and Structural Dynamics, Volume 3, Issue 2, pp. 121-138.

Velloso D. A. e Lopes F. R., 2002 – Fundações Profundas. Vol.2. Rio de Janeiro. COPPE-UFRJ.

Vaid Y. P. and Campanella R. G., 1977 – Time-Dependent Behavior of Undisturbed Clay, ASCE J. Geotech. Engng103, No. 7, 693–709.

Vieira I. S., 2009 – Expansão do Sistema de Transmissão de Energia Elétrica no Brasil. Dissertação de Mestrado em Engenharia Elétrica, Publicação PPGENE.DM-374/09, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília, DF, 69p.

Vinay R.B Ranjith A. Bharath. A., 2014 – Optimization of Transmission Line Towers: P-Delta Analysis. International Journal of Innovative Research in Science, Engineering and Technology ISSN: 2319-8753. Vol. 3, Issue 7, July.

Vucetic M. and Dobry R., 1991 – Effect of Soil Plasticity on Cyclic Response, Proc. ASCE Geotechnical Journal, Vol. 117(1), pp.89-107.

Work Group B 2.22, 2013 – Technical Brochure, TB 524, Publisher CIGRE Paris, ISBN: 978-2-85873-217-3, February, 153 pages.

Xu C. and Spyrakos C.C., 1996 – "Seismic Analysis of Towers Including Foundation Uplift", Engineering Structures, 18(4), 271-278.

Yang F. Y. Yang J. B. Zhang Z. F. Zhang H.Z. and Xing, H. Z., 2014 – Analysis on the Dynamic Responses of a Prototype Line From Iced Broken Conductors, Engineering Failure Analysis, vol. 39, pp. 108–123.

Zadnik B. 2016 – Member Contribution for review of Seismic Hazard

ANEXO A – Boletim de Sondagem

Figura A.1 – Boletim Utilizado nas Análises Geotécnicas – Profundidade 0,00m até 20,45m

Figura A.2 – Boletim Utilizado nas Análises Geotécnicas – Profundidade 20,45m até 40,5m

Figura A.3 - Boletim Utilizado nas Análises Geotécnicas - Profundidade 40,5m até 60,45

Figura A.4 – Boletim Utilizado nas Análises Geotécnicas – Profundidade 60,45m até 80,45m

Figura A.4 – Boletim Utilizado nas Análises Geotécnicas – Profundidade 80,45m até 87,68m

ANEXO B – Divisão da Torre, Estrutura do Elevador e Cálculo das Forças Estáticas de Vento

Figura B.1 - Pontos de Aplicação do Carregamento de Vento na Torre

modpic wind modpic wind	Synoptic wind Wind at 90° Point 10 11 400 401 Section1A Synoptic wind Wind at 90° Point 10 400	Ft 1.000 X 5.517 5.517 5.517 5.517 5.517 Pomt Height Ft 0.400 X 7.306 7.306	1413. 364 k 0.000 Y 0.000 0.000 0.000 0.000 0.000 10 292. 25 7305. 916 0.000 Y 0.000 Y 0.000	8 N 0.000 2 0.000 0.000 0.000 0.000 400 kg EN 0.000 Z 0.000	Resonance factoer β_z is Area ratio of ne Contour Area is esonance factoer β_z is	1: 52 Point 12 13 402 403 t area and c 29, 24 1. 52 ind at 90°	1,000 X 5,517 5,517 5,517 5,517 5,517 Shape facto	0.000 <u>Y</u> 0.000 0.000 0.000 46.04% r Cxt1 is	0.000 Z 0.000 0.000 0.000
Synoptic wind Point No. Number interp y <thinterp <math="">y Interp y Interp y <thinterp <math="">y Interp y Interp y</thinterp></thinterp>	Wind at 90° Point 10 11 400 401 SectionIA Synoptic wind Wind at 90° Point 10 400	1.000 X 5.517 5.517 5.517 5.517 5.517 Pomt Height Ft 0.400 X 7.306 7.306	10 10 V 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10 292, 255 7305, 916 0.000 V 0.000 V 0.000	N 0.000 Z 0.000 0.000 0.000 0.000 400 kg EN 0.000 Z 0.000	Area ratio of ne Contour Area is esonance factoer β_{Z} is	Vind at 90° Point 12 13 402 403 t area and c 29, 24 1, 52 ind at 90°	1,000 X 5,517 5,517 5,517 5,517 5,517 Shape facto	0.000 ¥ 0.000 0.000 0.000 0.000 0.000 46.04% or Cxt1 is	0.000 Z 0.000 0.000 0.000
Wind at 90° 1.060 0.000 0.000 Point X Y Z 10 5.517 0.000 0.000 11 5.517 0.000 0.000 10 5.517 0.000 0.000 11 5.517 0.000 0.000 10 5.517 0.000 0.000 11 5.517 0.000 0.000 10 5.517 0.000 0.000 10 5.517 0.000 0.000 10 7.00 0.000 0.000 10 7.366 0.000 0.000 10 7.366 0.000 0.000 10 7.366 0.000 0.000 11 7.366 0.000 0.000 11 7.366 0.000 0.000 11 7.366 0.000 0.000 11 7.366 0.000 0.000 11 1.52 1.52 11 11 1.52 1.52 11 120.6 0.00	Wind at 90° Point 10 11 400 401 control A Synoptic wind Wind at 90° Point 10 400	1.000 X 5.517 5.517 5.517 5.517 5.517 Pomt Height Ft 0.400 X 7.306 7.306	0.006 Y 0.000 0.000 0.000 0.000 10 292, 25 7305, 916 0.000 Y 0.000 Y 0.000	0.000 Z 0.000 0.000 0.000 0.000 400 kg EN 0.000 Z 0.000	Area ratio of ne Contour Area is esonance factoer β_Z is	Vind at 90° Point 12 13 402 403 t area and c 29,24 1,52 ind at 90°	1,000 X 5,517 5,517 5,517 5,517 5,517 ontour is Shape facto	0.000 ¥ 0.000 0.000 0.000 0.000 0.000 46.04% or Cxt1 is	0.000 Z 0.000 0.000 0.000
Point X Y Z 10 5.517 0.006 0.000 400 5.517 0.006 0.000 401 5.517 0.006 0.000 401 5.517 0.006 0.000 401 5.517 0.006 0.000 401 5.517 0.006 0.000 402 5.517 0.006 0.000 403 5.517 0.006 0.000 400 7.305 0.516 kg tesonance factor β_Z is 1.52 Wind at 96° 0.400 0.000 0.000 0.000 400 7.366 0.000 0.000 0.000 400 7.366 0.000 0.000 0.000 400 7.366 0.000 0.000 0.000 400 19.008 0.000 0.000 0.000 400 19.008 0.000 0.000 1.52 Wind at 90° 1.000 0.000 0.000	Point 10 11 400 401 cetton1A Synoptic wind Wind at 90° Point 10 400	X 5.517 5.517 5.517 5.517 5.517 90mt Height Ft 0.400 X 7.306 7.306	Y 0.000 0.000 0.000 0.000 0.000 0.000 292, 25 7305, 916 0.000 Y 0.000 Y 0.000	Z 0.000 0.000 0.000 0.000 400 kg EN 0.000 Z 0.000	Area ratio of ne Contour Area is esonance factoer β_Z is	Point 12 13 402 403 t area and c 29,24 1,52 ind at 90°	X 5.517 5.517 5.517 5.517 ontour is Shape facto	¥ 0.000 0.000 0.000 0.000 46.04%	Z 0.000 0.000 0.000 0.000
10 5.517 0.000 0.000 11 5.517 0.000 0.000 400 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 402 5.517 0.000 0.000 90011 22.25 1.52 1.52 Wind at 90° 0.400 0.000 0.000 400 7.366 0.600 0.000 400 7.366 0.600 0.000 400 7.366 0.600 0.000 401 9.038 0.000 0.000 90011 1.00 0.000 0.000 0.000<	10 11 400 401 chon1A Synoptic wind Wind at 90° Point 10 400	5.517 5.517 5.517 5.517 5.517 5.517 Point Height Ft 0.400 X 7.306 7.306	0.000 0.000 0.000 0.000 0.000 292, 25 7305, 916 0.000 V 0.000 V 0.000	0.000 0.000 0.000 0.000 400 kg KN 0.000 Z	Area ratio of ne Contour Area is esonance factoer β _Z is	12 13 402 403 t area and c 29, 24 1, 52 ind at 90°	5,517 5,517 5,517 5,517 5,517 ontour is Shape facto	0.000 0.000 0.000 0.000 46.04%	0.000 0.000 0.000 0.000 0.000
11 5.517 0.000 0.000 400 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 402 5.517 0.000 0.000 403 5.517 0.000 0.000 403 5.517 0.000 0.000 Ynoptic wind Ft 7305.916 kg tesonance factor β_Z is 1.52 Wind at 90° 0.400 0.000 0.000 0.000 Point X X Z Z 10 7.366 0.600 0.000 0.000 400 7.366 0.600 0.000 0.000 401 7.366 0.600 0.000 0.000 400 7.366 0.600 0.000 0.000 400 7.366 0.600 0.000 0.000 113 9.908 0.000 0.000 0.000 <td< td=""><td>11 400 401 tion1A Synoptic wind Wind at 90° Point 10 400</td><td>5.517 5.517 5.517 Point Height Ft 0.400 X 7.306 7.306</td><td>0.000 0.000 0.000 0.000 292,25 7305,916 0.000 V 0.000 V 0.000</td><td>0,000 0,000 0,000 400 kg KN 0,000 Z</td><td>Area ratio of ne Contour Area is esonance factoer β_Z is</td><td>13 402 403 t area and c 29, 24 1, 52 ind at 90°</td><td>5.517 5.517 5.517 ontour is Shape facto</td><td>0.000 0.000 0.000 46.04%</td><td>0.000</td></td<>	11 400 401 tion1A Synoptic wind Wind at 90° Point 10 400	5.517 5.517 5.517 Point Height Ft 0.400 X 7.306 7.306	0.000 0.000 0.000 0.000 292,25 7305,916 0.000 V 0.000 V 0.000	0,000 0,000 0,000 400 kg KN 0,000 Z	Area ratio of ne Contour Area is esonance factoer β_Z is	13 402 403 t area and c 29, 24 1, 52 ind at 90°	5.517 5.517 5.517 ontour is Shape facto	0.000 0.000 0.000 46.04%	0.000
400 5.517 0.000 0.000 400 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 401 5.517 0.000 0.000 402 5.517 0.000 0.000 403 5.517 0.000 0.000 403 5.517 0.000 0.000 403 5.517 0.000 0.000 403 5.517 0.000 0.000 403 5.517 0.000 0.000 5900ptic wind Fit 100 400 Contour Area is 29.25 29.24 Shape factor Cx11 is 1.52 1.51 Wind at 90° 0.400 0.000 0.000 0.000 0.000 400 7.305 0.000 0.000 0.000 0.000 100 400 700 Area ratio of net area and contour is 31.71% Wind at 90° 1.000 0.000 0.000 0.000 101 100 0.000 0.000 0.000 <	400 401 mon1A Synoptic wind Wind at 90° Point 10 400	5.517 5.517 Point Height Ft 0.400 X 7.306 7.306	0.000 0.006 10 292,25 7305,916 6.000 Y 0.000	0.000 0.000 400 kg KN 0.000 Z	Area ratio of ne Contour Area is esonance factoer β_{Z} is	402 403 t area and c 29, 24 1, 52 ind at 90°	5.517 5.517 ontour is Shape facto	0.000 0.000 46.04%	0.000
401 5.517 0.000 0.000 401 5.517 0.000 0.000 403 5.517 0.000 0.000 1001 10 400 Area ratio of net area and contour is 929.24 Shape factor Cxt1 is 1.52 1.3 1001 10 400 7.305 91.6 kg tesonance factor β_2 is 1.52 Vind at 90° 0.400 0.000 0.000 1001 7.306 0.000	401 shon1A Synoptic wind Wind at 90° Point 10 400	5,517 Point Height Fr 0,400 X 7,306 7,306	9.000 10 292, 25 7305, 916 0.000 Y 0.000 V	0.000 400 kg EN 0.000 Z	Area ratio of ne Contour Area is esonance factoer β_{Z} is	403 t area and c 29, 24 1, 52 ind at 90°	5,517 ontour is Shape facto	0.000 46.04% or Cxt1 is	0.000
tion I A Point 10 400 Area ratio of net area and contour is 46.04% Synoptic wind Fi 7305.916 kg tesonance factoer β_{2} is 1.52 Shape factor Cxt1 is 1.3 Wind at 90° 0.400 0.000 0.000 Point X X Z 10 7.366 0.000 0.000 Point X Y Z 112 7.366 0.000 0.000 Point X Y Z 10 7.366 0.000 0.000 Point X Y Z 10 9.008 0.000 0.000 Point <td< td=""><td>Synoptic wind Wind at 90° Point 10 400</td><td>Pomt Height Ft 0.400 X 7.306 7.306</td><td>10 292, 25 7305, 916 0,000 ¥ 0,000</td><td>400 kg KN 0.000 Z</td><td>Area ratio of ne Contour Area is contour Area is consince factoer β_{2} is</td><td>t area and c 29, 24 1, 52 ind at 90°</td><td>ontour is Shape facto</td><td>46.04% or Cxt1 is</td><td>1 95</td></td<>	Synoptic wind Wind at 90° Point 10 400	Pomt Height Ft 0.400 X 7.306 7.306	10 292, 25 7305, 916 0,000 ¥ 0,000	400 kg KN 0.000 Z	Area ratio of ne Contour Area is contour Area is consince factoer β_{2} is	t area and c 29, 24 1, 52 ind at 90°	ontour is Shape facto	46.04% or Cxt1 is	1 95
then IA Point 10 400 Area ratio of net area and contour is 46.04h Height 282.25 Contour Area is 28.34 Shape factor Cxt1 is 1.3 Wind at 90° 0.400 0.000 0.000 Image: State in the image: State in	Synoptic wind Wind at 90° Point 10 400	Point Height F: 0.400 X 7.306 7.306	10 292, 25 7305, 916 0.000 Y 0.000 Y	400 kg KN 0.000 Z	Area ratio of ne Contour Area is contour Area is control of β_Z is	t area and c 29, 24 1, 52 ind at 90°	ontour is Shape facto	46.04% or Cxt1 is	1.95
Height 282.25 Contour Area is 28.24 Shape factor Cxt1 is 1.3 Wind at 90° 0.400 0.000 0.000 0.000 0.000 0.000 0.000 Point X Y Z 10 7.306 0.600 0.000 400 7.306 0.600 0.000 0.000 12 7.306 0.600 0.000 400 7.306 0.600 0.000 0.000 12 7.306 0.600 0.000 400 7.306 0.600 0.000 0.000 12 7.306 0.600 0.000 400 7.306 0.600 0.000 0.000 12 7.306 0.600 0.000 Yunoptic wind Ft 15206.71 kg esonance factor β_Z is 1.52 Shape factor Cxt1 is 1.43 Yunoptic wind Ft 1520.6.71 kg esonance factor β_Z is 1.52 Shape factor Cxt1 is 1.43 Yunoptic wind Ft 51.528 Sha	Synoptic wind Wind at 90° Point 10 400	Height Ft 0.400 X 7.306 7.306	292, 25 7305, 916 0,000 ¥ 0,000	kg KN 0.000 Z	Contour Area is esonance factoer β_Z is	29, 24 1, 52 ind at 90°	Shape facto	er Cxtl is	1.45
Synoptic wind Point FI 7305. 915 kg to 0.000 tesonance factor β_{Z} is 1.52 1.52 Wind at 90° 0.400 0.000 0.000 Point X Y Z 10 7.366 0.000 0.000 460 7.366 0.000 0.000 460 7.366 0.000 0.000 460 7.366 0.000 0.000 Height 283.1 Contour Area is 80.95] Synoptic wind Ft 15206.71 kg esonance factor Vind at 90° 1.000 0.000 0.000 Point X Y Z 400 19.008 0.000 0.000 700 800 Area ratio of net area and contour is 41.028 Wind at 90° 1.000 0.000 0.000 700 800 Area ratio of net area and contour is 41.028 Wind at 90° 1.000 0.000 0.000 701 19.008 0.000 0.000	Synoptic wind Wind at 90° Point 10 400	Ft 0.400 X 7.306 7.306	7305.916 0.000 ¥ 0.000	kg KN 0.000 Z	esonance factoer β_{Z} is	1. 52 ind at 90°	62		4.00
Wind at 90° 0.400 0.000 0.000 Point X Y Z 10 7.306 0.000 0.000 400 7.306 0.000 0.000 400 7.306 0.000 0.000 400 7.306 0.000 0.000 400 7.306 0.000 0.000 400 7.306 0.000 0.000 400 7.306 0.000 0.000 400 7.306 0.000 0.000 400 7.306 0.000 0.000 90mt To see the line Contour Area is 80.95 90mt To see the line N Y Z Wind at 90° 1.000 0.000 0.000 0.000 90int X Y Z V Z 19.008 0.000 0.000 0.000 0.000 0.000 700 800 Area ratio of net area and contour is 41.028	Wind at 90° Point 10 400	0.400 X 7.306 7.306	0.000 Y 0.000	0.000 Z	Wi	nd at 90°	62		
Wind at 90° 0.400 0.000	Wind at 96° Point 10 400	0.409 X 7.306 7.306	0.000 Y 0.000	0.000 Z	Wi	nd at 90°	10000	2 KeW	1 (M. 16 (M. 17))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Point 10 400	X 7.306 7.306	¥ 0.000	Z			0,400	0.000	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	400	7.306	0.000			Point	X	Y	Z
460 7.365 6.600 6.600 ction2 Point 400 700 Area ratio of net area and contour is \$1,716 Synoptic wind Ft 12206.71 kg esonance factoer β_{2} is 1.52 Wind at 90° 1.000 0.000 0.000 0.000 Point X Y Z 400 19.008 0.000 0.000 0.000 Point X Y Z 400 19.008 0.000	400	7,306		0.000		12	7.305	0.000	9,000
tion2 Point 400 700 Area ratio of net area and contour is \$1.71% Contour Area is 80.95 Shape factor Cxt1 is 1.48 ynoptic wind Ft 120 Wind at 90° 1.000 0.000 0.000 Point X Y Z 400 19.008 0.000 0.000 Point X Y Z 400 19.008 0.000 0.000 0.000 401 19.008 0.000 0.000 0.000 700 19.008 0.000 0.000 0.000 701 19.008 0.000 0.000 0.000 Ction3 Point 700 800 Area ratio of net area and contour is 41.028 Wind at 90° 1.000 0.000 0.000 0.000 0.000 Ction3 Point 700 800 Area ratio of net area and contour is 41.028 Wind at 90° 1.000 0.000 0.000 0.000 0.000 <td>tion?</td> <td></td> <td>6,660</td> <td>0.000</td> <td></td> <td>402</td> <td>7.306</td> <td>6.600</td> <td>0.000</td>	tion?		6,660	0.000		402	7.306	6.600	0.000
Control regime 200.30 Shape factor CX1 is 1.48 Synoptic wind Ft 15206.71 kg esonance factor β_{z} is 1.52 Wind at 90° 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Point X Y Z Wind at 90° 1.000 0.000 0.000 400 19.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 401 19.008 0.000 0.000 0.000 0.000 0.000 0.000 700 19.008 0.000 0.000 Area ratio of net area and contour is 41.028 Wind at 90° 1.000 0.000 0.000 Area ratio of net area and contour is 41.028 Wind at 90° 1.000 0.000 0.000 0.000 0.000 0.000 Wind at 90° 1.000 0.000 0.000 0.000 0.000 0.000 0.000 Wind at 90° 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	EUMALA	Poin	t 400	700	Area ratio of n	et area and	contour is	31.71	6
Wind at 90° 1.000 0.000 0.000 Point X Y Z 400 19.008 0.000 0.000 401 19.008 0.000 0.000 700 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 Wind at 90° 1.000 0.000 0.000 Yout 15555 0.000 0.000 0.000 Yout 16555 0.000 0.000 0.000 Yout 16555 0.0000 0.000 0.000	Synoptic wind	F	t 15206. 7	1 kg EN	sonance factoer $\beta_{Z^{is}}$	1, 52	Shape ta	CIOT CALL I	s <u>1,467</u>
Point X Y Z 460 19.008 0.000 0.000 401 19.008 0.000 0.000 700 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 Point 700 800 Area ratio of net area and contour is 41.02% Contour Area is 24.45 Shape factor Cxt1 is 1. Synoptic wind Ft 5515.888 kg iesonance factoer β_Z is 1.52 Wind at 90° 1.000 0.000 0.000 0 0 0 Ynoptic wind Ft 5515.888 kg iesonance factoer β_Z is 1.52 Wind at 90° 1.000 0.000 0.000 0 0 0 700 <t< td=""><td>Wind at 90°</td><td>1.000</td><td>0.000</td><td>0.000</td><td>W</td><td>Find at 90°</td><td>1.000</td><td>0.000</td><td>0.000</td></t<>	Wind at 90°	1.000	0.000	0.000	W	Find at 90°	1.000	0.000	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Point	X	Y	Z		Point	X	Y	Z
461 39.008 0.000 0.000 700 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 Height 274.85 Contour Area is 24.45 Shape factor Cxt1 is 1. 1. 1. Numptic wind Ft 5515.886 kg lesonance factoer β_Z is Wind at 90° 1.000 0.000 0.000 0.000 Point X Y Z 702 6.395 0.000 0.000 701 6.895 0.000 0.000 0.000 803 6.895 0.000 0.000 801 6.895 0.000 0.000 Area ratio of net area and contour is 40.68% Height 274.85 Contour Area is 21.57 Shape factor Cxt1 is 1.	400	19.008	0.000	0.000	1	402	19.008	0.000	0.000
700 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 701 19.008 0.000 0.000 702 19.008 0.000 0.000 703 19.008 0.000 0.000 703 19.008 0.000 0.000 703 19.008 0.000 0.000 704 5515 886 kg cesonance factoer β_Z is 1.52 Wind at 90° 1.000 0.000 0.000 0.000 0.000 0.000 800 5.895 0.000 0.000 0.000 0.000 0.000 0.000 801 6.895 0.000 0.000 Area ratio of net area and contour is 40.68% 1003A Point 700 800 Area ratio of net area and contour is 40.68% </td <td>401</td> <td>19,008</td> <td>0.000</td> <td>0.000</td> <td>1</td> <td>403</td> <td>19,008</td> <td>0.000</td> <td>0.000</td>	401	19,008	0.000	0.000	1	403	19,008	0.000	0.000
Image: constraint of the second constraint of t	760	19 008	0.000	6.000		702	19 008	0.000	0.000
Vind at 90° 1,000 0,000	701	10 008	0.000	0000	-	703	10.008	0.000	0.000
Wind at 90° 1.000 0.000	Synoptic wind	Heigh F	nt 274, 8 It 5515, 88	5 6 kg	Contour Area is tesonance factoer β_{z} is	24. 1.52	45 Shape	factor Cx	tl 15 1.
Wind at 90° 1,000 0,000 0,000 0,000 0 Point X Y Z 700 6,895 0,000 0,000 0 700 6,895 0,000 0,000 0,000 0 <th0< th=""> <th0< th="" tr<=""><th>Land to be a set of the set of th</th><th></th><th>55, 1558</th><th>KN</th><th></th><th></th><th></th><th></th><th></th></th0<></th0<>	Land to be a set of the set of th		55, 1558	KN					
Point X Y Z 700 6.895 0.000 0.006 701 6.895 0.000 0.006 701 6.895 0.000 0.006 800 5.895 0.000 0.000 801 6.895 0.000 0.000 801 6.895 0.000 0.000 Ron3A: Point 700 800 Area ratio of net area and contour is 40.68% Height 274.85 Contour Area is 21.57 Ynoptic wind Pt 4635.341 kg 'csonance factoer Wind at 90° 0.400 0.000 0.000 0.000	Wind at 90°	1,000	0.000			1.22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		and the state of the		0.000		Wind at 9	0° 1.000	0.00	0 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Point	X	Y	0.000 Z		Wind at 9 Point	0° 1.000 X	0.00 Y	0 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Point 700	X 6.895	Y 0.000	0.000 Z 0.000		Wind at 9 Point 702	0° 1.000 X 6.895	0,00 Y 5 0.00	0 0.0
801 6.895 0.000 0.000 803 6.895 0.000 0 non3A Point 700 800 Area ratio of net area and contour is 40.68% Height 274.85 Contour Area is 21.57 Shape factor Cxt1 is 1. ynoptic wind Ft 4635.341 kg lesonance factor βzis 1.52 Wind at 90° 0.400 0.000	Point 700 701	X 6.895 6.895	Y 0.000 6.000	0.000 Z 0.000 0.000		Wind at 9 Point 702 703	0° 1.000 X 6.895 6.895	0 0.00 Y 5 0.00 5 0.00	0 0.0 0 0.0
tion3A Point 700 800 Area ratio of net area and contour is 40.68% Height 274.85 Contour Area is 21.57 Shape factor Cxt1 is 1. Synoptic wind Ft 4685.341 kg Sconance factor β_Z is 1.52 Wind at 90° 0.400 0.000 0.000 0.000 0.000 0.000	Point 700 701 800	X 6.895 6.895 5.895	Y 0.000 0.000 0.000	0.000 Z 0.000 0.000	-	Wind at 9 Point 702 703 802	0° 1.000 X 6.895 6.895	0 0.00 Y 5 0.00 5 0.00 5 0.00	0 0.0 0 0.0 0 0.0
Height 274, 85 Contour Area is 21, 57 Shape factor Cxt1 is 1. ynoptic wind Ft 4635, 341 kg lesonance factoer β_Z is 1. 52 Wind at 90° 0.400 0.000 0.000 Wind at 90° 0.400 0.000 0.00	Point 700 701 800 801	X 6.895 6.895 5.895 6.895	Y 0.000 0.000 0.000 0.000	0.000 Z 0.000 0.000 0.000		Wind at 9 Point 702 703 802 803	0° 1.000 X 6.895 6.895 6.895 6.895	0 0.00 Y 5 0.00 5 0.00 5 0.00 5 0.00	0 0.0 0 0.0 0 0.0 0 0.0
Synoptic wind Ft 4635.341 kg lesonance factoer β_Z is 1.52 Wind at 90° 0.400 0.000 0.000 Wind at 90° 0.400 0.000 0.000	Point 700 701 800 801	X 6.895 6.895 5.895 6.895 6.895	Y 0.000 0.000 0.000 0.000	0.000 Z 0.000 0.000 0.000 0.000	Area ratio of	Wind at 9 Point 702 703 802 803	0° 1.000 X 6.895 6.895 6.895	0 0.00 Y 5 0.00 5 0.00 5 0.00 5 0.00	0 0.0 0 0.0 0 0.0 0 0.0
Wind at 90° 0.400 0.000	Point 700 701 800 801 ction3A	X 6.895 6.895 6.895 6.895 6.895 Poim	Y 0.000 0.000 0.000 0.000 t 700	0.000 Z 0.006 0.006 0.000 0.000	Area ratio of	Wind at 9 Point 702 703 802 803 f net area at	0° 1.000 X 6.895 6.895 6.895 6.895 6.895	0 0.00 <u>Y</u> 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
Wind at 90° 0.400 0.000 0.000 0.000 0.000 0.000	Point 700 761 800 801 chon3A	X 6.895 6.895 5.895 6.895 Poin Heigh	Y 0.000 0.000 0.000 0.000 t 700 t 274.83	0.000 Z 0.006 0.006 0.000 0.000 800	Area ratio of Contour Area is	Wind at 9 Point 702 703 802 803 f net area an 21.5	0° 1.000 X 6.895 6.895 6.895 6.895 6.895 7 Shape	0 0.00 <u>Y</u> 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
Wild at 20 0.400 0.000 0.000 0.000 0.000 0.000	Point 700 761 800 801 ction3A Synoptic wind	X 6.895 6.895 5.895 6.895 90m Heigh F	Y 0.000 0.000 0.000 0.000 t 700 t 274.8 t 4635.34	0.000 Z 0.000 0.000 0.000 0.000 800 5 1 kg	Area ratio of Contour Area is lesonance factoer β_Z is	Wind at 9 Point 702 703 802 803 f net area a: 21.5 1.52	0° 1.000 X 6.895 6.895 6.895 6.895 7 Shape	0 0.00 Y 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 15 40.6 factor Cxt1	0 0.0 0 0.0 0.
Dutat V V 7	Point 700 701 800 801 ction3A Synoptic wind	X 6.895 6.895 5.895 5.895 90m Heigh F	Y 0.000 0.000 0.000 0.000 t 274.8 t 4835.34	0.000 Z 0.000 0.000 0.000 0.000 800 800	Area ratio of Contour Area is 'esonance factoer $\beta_{\rm Z}$ is	Wind at 9 Point 702 703 802 803 f net area at 21.5 1.52 Wind -: 60	0° 1.000 X 6.895 6.895 6.895 6.895 7 Shape	0 0.00 Y 5 0.00 5 0.00 5 0.00 5 0.00 15 40.6 factor Cxt1	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1 15 1.3
rom A I L Fom A I	Point 700 701 800 801	X 6.895 6.895 6.895 6.895 Fom Heigh F 0.400	Y 0.000 0.000 0.000 0.000 t 700 t 274.8 t 4835.34 4835.34 0.000 V	0.000 Z 0.000 0.000 0.000 0.000 800 800	Area ratio of Contour Area is lesonance factoer β_Z is	Wind at 9 Point 702 703 802 803 f net area at 21.5 1.52 Wind at 90 P.2.1	0° 1.000 X 6.895 6.895 6.895 6.895 6.895 7 Shape	0 0.00 Y 5 0.00 5 0.00 5 0.00 15 40.6 factor Cxt1 0.000	0 0.0 0 0.0 0.
	Point 700 701 800 801 chon3A Synoptic wind Wind at 90° Point 200	X 6.895 6.895 6.895 6.895 90in Heigh F 0.400 X	Y 0.000 0.000 0.000 t 700 t 274.8 t 4835.34 4835.34 4835.34 5.000 Y	0.000 Z 0.006 0.006 0.000 0.000 800 800 1 kg KN 0.000	Area ratio of Contour Area is lesonance factoer β_Z is	Wind at 9 Point 702 703 802 803 f net area at 21.5 1.52 Wind at 90 Point	0° 1.000 X 6.895 6.895 6.895 6.895 1.000 5.895 6.895 6.895 0.400 X 0.400	0 0.00 Y 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 1s 40.6 factor Cxt1 0.000 Y Y	0 0.0 0 0.0 0.
700 4.835 0.000 0.000 702 4.835 0.000 0.0	Point 700 701 800 801 ction3A Synoptic wind Wind at 90° Point 700	X 6.895 6.895 6.895 6.895 Poin Heigh F 0.400 X 4.835	Y 0.000 0.000 0.000 0.000 t 274.8 t 4835.34 4835.34 0.000 Y 0.000 Y 0.000	0.000 Z 0.006 0.006 0.000 0.000 0.000 800 800 1 kg KN 0.000 2 0.000	Area ratio of Contour Area is contour β_Z is	Wind at 9 Point 702 703 802 803 f net area at 21.5 1.52 Wind at 90 Point 702	0° 1.000 X 6.895 6.895 6.895 6.895 6.895 1.000 X 1.000 X 4.835	0 0.000 Y 5 0.000 5 0.000 5 0.000 15 40.6 factor Cxt1 0.000 Y 0.000	0 0.0 0 0.0 0.
Point X Y Z Point X Y	Point 700 701	X 6.895 6.895	Y 0.000 0.000	0.000 Z 0.000 0.000	-	Wind at 9 Point 702 703	0° 1.000 X 6.895 6.895	0 0.00 Y 5 0.00 5 0.00	0
700 1032 0.000 0.000 703 1035 0.000	Point 700 761 800 801 chon3A Synoptic wind Wind at 90° Point 700	X 6.895 6.895 6.895 6.895 6.895 Poin Heigh F 0.400 X	Y 0.000 0.000 0.000 0.000 t 274.8 t 4635.34 4635.34 0.000 Y 0.000 Y	0.000 Z 0.006 0.006 0.000 0.000 800 800 1 kg KN 0.000	Area ratio of Contour Area is lesonance factoer β_Z is	Wind at 9 Point 702 703 802 803 f net area at 21.5 1.52 Wind at 90 Point 702	0° 1.000 X 6.895 6.895 6.895 6.895 6.895 7 Shape ° 0.400 X	0 0.00 Y 5 0.00 5 0.00 5 0.00 5 0.00 15 40.6 factor Cxt1 0.009 Y	0 0. 0 0.
700 4.835 0.000 0.000 702 4.835 0.000 0.0	Point 700 701 800 801 etton3A Synoptic wind Wind at 90° Point 700	X 6.895 6.895 6.895 6.895 90in Heigh F 0.400 X 4.835	Y 0.000 0.000 0.000 t 274.8 t 4835.34 4835.34 4835.34 4835.34 0.000 Y 0.000	0.000 Z 0.006 0.006 0.000 0.000 800 5 1 kg KN 0.000 Z 0.000	Area ratio of Contour Area is lesonance factoer β_Z is	Wind at 9 Point 702 703 802 803 f net area at 21.5 1.52 Wind at 90 Point 702	0° 1.000 X 6.895 6.895 6.895 6.895 1.000 Shape ° 0.400 X 4.835	0 0.00 Y 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 1s 40.6 factor Cxt1 0.000 Y 0.000	0 0. 0 0. 0 0. 0 0. 1 15 1. 0.0 2 0.0

\square , Calculation of the wind on tower

Sections	Point	1100	1200	Area ratio o	f net area and	contour is	41.65%	
100 Carto 100 - 50	Height	259.2		Contour Area is	24, 3	Shape fact	or Cxt1 is	1, 382
Synoptic wind	Ft	5492.604	kg	.esonance factoer $\beta_{z^{is}}$	1.52			
		5 0250	KN	-				
Wind at 90°	1,000	0.000	0.000		Wind at 90°	1.000	0.000	0.000
Point	X	Y	Z		Point	X	Y	Z
1100	6.866	0.000	0.000		1102	6.866	9.000	0.000
1101	6.866	0.000	0.000	-	1103	6.866	0.000	0.000
1200	6,866	0.009	0.000	-	1202	6,866	0.000	0.000
1201	0.800	0.000	0,090		1203	6,805	0.000	0.000
- tion 5 à	Paint	1100	1200	Area ratio	of net area and	1 contour is	43.144	a –
comostore -	Height	050.0	1200	Contour Area is	16.9	Shace fa	etor Cytl is	1 007
Contraction on and	Intight	9/06 000	- 242	Comour Aica is	1.50	ompera	CIOI CALL I	1. 011
Synoptic Wind	11	3786,868	Kg	Lesonance factoer $P_{Z^{15}}$	1. 02	ļ		
Wind at 96*	0.400	0.000	0.000	1	Wind at 90°	6.400	0.000	0.000
Point	X	V	7.		Point	x	Y	7
1100	3,787	0.000	0.000	1	1102	3.787	0.000	0.000
						151177		
-	2 707	0.000	0.000	-	1202	3.787	0.000	0.000
1200	3.737						1111111	
1200	3.737		1					
1200	Point	1200	1400	Area ratio	of net area at	nd contour	is 39.7	0%
1200	Point	1200	1400	Area ratio	of net area a	nd contour	ís 39, 7	9%
1200	Point Height	1200 253, 28	1400	Area ratio Contour Area	of net area at	nd contour 5 Shape 1	is 39.7 actor Cxt1	9% is 1, 3
Synoptic wind	Point Height Ft	1200 253, 28 13590, 84	1400 Icg	Area ratio Contour Area Lesonance factoer β _Z	of net area at is 62. is 1, 62	nd contour 5 Shape i	is 39.7 actor Cxt1	9% is 1.3
1200 section 5 Synoptic wind	Point Height Ft	1200 253, 25 13590, 84	1400 kg KN 8.000	Area ratio Contour Area Lesonance factoer β _Z	of net area at is 62. is 1, 52	nd contour	is 39.77	9% is 1. 5
1200 section 5 Synoptic wind Wind at 90° Point	Point Height Ft 1.000	1200 253, 28 13590, 84 0.000 X	1400 kg KN 0.000	\Box Area fatio Contour Area Lesonance factoer β_Z	of net area at is 62. is 1, 52 Wind at 90 Point	nd contour 5 Shape 1 • 1.000	is 39.7 actor Cxt1 0.000 V	9% is 1.3 0.00
1200 Synoptic wind Wind at 90° Point 1200	Point Height 1.000 X	1200 253, 28 13590, 84 0.000 ¥ 0.000	1400 kg EN 0.000 Z	Area fatio Contour Area Lesonance factoer β_{Z}	of net area at is 62. is 1. 52 Wind at 90 Point 1202	* 1.000	is 39.7 actor Cxt1 0.000 Y 0.000	9% is 1.3 0.00 Z
1200 Synoptic wind Wind at 90° Point 1200	Point Height 1.000 X 16.989	1200 253, 28 13590, 84 6,000 ¥ 6,000 0,000	1400 kg KN 0.000 Z 0.000	Area fatio Contour Area Jesonance factoer β_{Z}	of net area an is 62. is 1.62 Wind at 90 Point 1202 1203	* 1.000 X 16.989	is 39, 7 actor Cxt1 0.000 Y 0.000 0.000	9% is 1, 5 0,00 Z 0.00
1200 Synoptic wind Wind at 90° Point 1200 1201	Point Height Ft 1.000 X 16.989 16.989	1200 253, 25 13590, 84 0,000 ¥ 0,000 0,000 0,000	1400 kg RN 0.000 Z 0.006 0.000	Area fatio Contour Area Jesonance factoer β_{Z}	of net area an is 62. is 1. 62 Wind at 90 Point 1202 1203 1402	nd contour 5 Shape 1 ° 1.000 X 16.989 16.989	is 39.7 actor Cxt1 6.000 Y 6.000 6.000 6.000	9% is 1, 5 0.00 2 0.00 0.00
1200 Synoptic wind Wind at 90° Point 1200 1201 1400 1401	Point Height Ft 1.000 X 16.989 16.989 16.989	1200 255, 25 13590, 84 6,000 ¥ 0,000 0,000 0,000 0,000	1400 kg KN 0.000 Z 0.000 0.000 0.000	Area fatio Contour Area Lesonance factoer β_{Z}	of net area an is 62. is 1. 62 Wind at 90 Point 1202 1203 1402 1403	* 1.000 * 1.000 X 16.989 16.989 16.989	is 39.7 actor Cx11 6.000 Y 6.000 6.000 6.000 6.000	9% is 1, 5 0.00 2 0.00 0.00 0.00
1200 section6 Synoptic wind Wind at 90° Point 1200 1201 1400 1401	Point Height Ft 1.000 X 16.989 16.989 16.989	1200 253, 25 13590, 34 0.000 Y 0.000 0.000 0.000 0.000	1400 kg KN 0.000 Z 0.000 0.000 0.000 0.000	Area fatio Contour Area Lesonance factoer β_2	of net area an is 62. is 1.62 Wind at 90 Point 1202 1203 1402 1403	nd contour 5 Shape 1 8 1.000 X 16.989 16.989 16.989 16.989	is 39.77 actor Cx11 0.000 Y 0.000 0.000 0.000 0.000	9% is 1, 3 0.00 2 0.00 0.00 0.00 0.00
1200 Synoptic wind Wind at 90° Point 1200 1201 1400 1401	Point Height Ft 1.000 X 16.989 16.989	1200 255, 25 13590, 34 0.000 ¥ 0.000 0.000 0.000 0.000	1400 kg ℝN 2 0.000 0.000 0.000 0.000	Area ratio Contour Area Lesonance factoer β_2	of net area an is 62. is 1.62 Wind at 90 Point 1202 1203 1402 1403	* 1.000 * 1.000 X 16.989 16.989 16.989	is 39.77 actor Cxt1 6.000 Y 6.000 6.000 6.000	9% is 1, 5 0,00 2 0.00 0,00 0,00 0,00
1200 SectionS Synoptic wind Wind at 90° Point 1200 1201 1400 1401	Point Height Ft 1.000 X 16.989 16.989 16.989 16.989	1200 255, 25 13590, 84 0.000 ¥ 0.000 0.000 0.000 0.000 0.000	1400 kg KN 0.000 Z 0.000 0.000 0.000 0.000	Area fatio Contour Area Lesonance factoer β ₂ :	of net area an is 62. is 1.62 Wind at 90 Point 1202 1203 1402 1403 0 of net area a	nd contour 5 Shape 1 * 1.000 X 16.989 16.989 16.989 16.989	is 39.77 actor Cxt1 0.000 Y 0.000 0.000 0.000 0.000	9% is 1, 5 0.00 2 0.00 0.00 0.00 0.00 0.00 0.00
1200 Synoptic wind Vind at 90° Point 1200 1201 1400 1401	Point Height Ft 1.000 X 16.989 16.989 16.989 16.989 16.989	1200 253, 25 13590, 84 0.000 Y 0.000 0.000 0.000 0.000 1400 244, 5	1400 kg KN 0.000 Z 0.000 0.000 0.000 0.000	Area fatio Contour Area Lesonance factoer β ₂ (of net area an is 62. is 1. 52 Wind at 90 Point 1202 1203 1402 1403 of net area a is 72, 5	nd contour 5 Shape 1 8 1.000 X 16.989 16.989 16.989 16.989 16.989 16.989 16.989 16.989 16.989	is 39.77 actor Cxt1 6.000 Y 6.000 6.000 6.000 6.000 15 \$7.1 factor Cxt1	9% is 1, 5 0,00 2 0,00 0,00 0,00 0,00 0,00 1, 5 1, 4 1, 5 1,
1200 Section 5 Synoptic wind Vind at 90° Point 1200 1201 1400 1401 Section 7 Synoptic wind	Point Height Ft 1.000 X 16.989 16.989 16.989 16.989 16.989 Ft	1200 255, 25 13590, 34 0,000 Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1400 244, 5 14988, 37	1400 kg KN 0.000 Z 0.000 0.000 0.000 1500	Area ratio Contour Area Lesonance factoer β ₂ Area ratio Contour Area Lesonance factoer β ₂	of net area an is 62. is 1. 52 Wind at 90 Point 1203 1402 1403 0 of net area a is 72.6 is 1. 52	nd contour 5 Shape 1 • 1.000 X 16.989 16.989 16.989 16.989 16.989 16.989 16.989	is 39, 7 actor Cxt1 6,000 Y 6,000 6,000 6,000 6,000 1s 87, 1 factor Cxt1	9% is 1, 3 0,00 2 0,00 0,00 0,00 0,00 0,00 0,00 1,15 1,1
1200 Section 5 Synoptic wind Wind at 90° Point 1200 1201 1400 1401 Section 7 Synoptic wind Wind at 90°	Point Height Ft 1.000 X 16.989 16.989 16.989 16.989 16.989 16.989 16.989 16.989 16.989	1200 255,25 13590,84 6.000 Y 0.000 0.000 0.000 0.000 0.000 1400 244.5 14988,37 0.000	1400 kg KN 0.000 2 0.000 0.000 0.000 0.000 1500 kg KN KN 0.000	Area ratio Contour Area Sesonance factoer β_Z Area ratio Contour Area Resonance factoer β_Z	of net area an is 62. is 1. 82 Wind at 90 Point 1202 1203 1402 1403 0 of net area a is 72.6 is 1. 52	nd contour 5 Shape 1 • 1.000 X 16.989 16.	is 39, 7 actor Cxt1 6.000 9.000 6.000 6.000 6.000 6.000 6.000 6.000	9% is 1, 3 0.00 2 0.00 0.00 0.00 0.00 1.00 1.15 1, 4
1200 Section 5 Synoptic wind Wind at 90° Point 1200 1201 1400 1401 1401 Section 7 Synoptic wind Wind at 90° Point	Point Height Ft 1.000 X 16.989 17.97 17.	1200 255, 25 13590, 84 6,000 X 0,000 0,000 0,000 0,000 0,000 1400 244, 5 14988, 37 0,000 X	1400 kg KN 0.000 2 0.000 0.000 0.000 0.000 1500 kg KN 0.000 2	Area ratio Contour Area Jesonance factoer β _Z Area ratio Contour Area Resonance factoer β _Z	of net area an is 62. is 1. 82 Wind at 90 Point 1202 1203 1402 1403 0 of net area a is 72.6 is 1. 52 Wind at 90 Point	nd contour 5 Shape 1 • 1.000 X 16.989 16.	is 39, 7 actor Cxt1 6.000 9.000 6.000 6.000 6.000 is 37, 1 factor Cxt1 6.000	9% is 1, 3 0.00 2 0.00 0.00 0.00 0.00 1 is 1, 4 0.00 0.0
1200 Section6 Synoptic wind Wind at 90° Point 1200 1201 1400 1401 Section7 Synoptic wind Wind at 90° Point Lina	Point Height Ft 1.000 X 16.989	1200 255, 25 13590, 84 0,000 X 0,000 0,000 0,000 0,000 0,000 1400 244, 5 14988, 37 0,000 Y 0,000 Y	1400 kg KN 0.000 0.000 0.000 0.000 0.000 1500 kg KN 0.000 2 2 0.000	Area ratio Contour Area Jesonance factoer β ₂ Area ratio Contour Area Resonance factoer β ₂	of net area an is 62. is 1. 82 Wind at 90 Point 1202 1203 1402 1403 0 of net area a is 72. 9 is 1. 52 Wind at 90 Point 1402	* 1.000 * 1.000 X 16.989 10.0000 10.00000 10.00000 10.0000000000	is 39, 7 actor Cxt1 0.000 9,000 0.000 0.000 0.000 0.000 0.000 1s 37, 1 factor Cxt1 factor Cxt1 0.000 Y	9% is 1, 3 0.00 2 0.00 0.
1200 Synoptic wind Wind at 90° Point 1200 1201 1400 1401 Section 7 Synoptic wind Wind at 90° Point 1400	Point Height Ft 1.000 X 16.989	1200 253, 25 13590, 84 0,000 X 0,000 0,000 0,000 0,000 1400 244, 5 14988, 37 0,000 Y 0,000 0,000	1400 kg KN 0.000 0.000 0.000 0.000 0.000 1500 kg KN KN 0.000 2 0.000 0.000	Area ratio Contour Area Lesonance factoer β _Z	of net area and is 62. is 62. is 1. 62 Wind at 90 Point 1202 1203 1402 1403 of net area and is 72.6 is 1. 52 Wind at 90 Point 1402 1402 1402	* 1.000 * 1.000 X 16.989 16.9988 16.9988 16.9988 16.9988 16.9988 16.9988 16.9988 16.9988 16.9988 16.9988	is 39, 7 actor Cxt1 0.000 Y 0.000 0.000 0.000 0.000 0.000 is 37, 1 factor Cxt1 factor Cxt1 0.000 Y 0.000 0 X	9% is 1, 3 0.00
1200 Synoptic wind Wind at 90° Point 1200 1201 1400 1401 Synoptic wind Wind at 90° Point 1400 1401	Point Height Ft 1.000 X 16.989	1200 253, 25 13590, 84 0,000 Y 0,000 0,000 0,000 0,000 1400 244, 5 14988, 37 0,000 Y 0,000 0,000 0,000	1400 kg KN 0.000 2 0.000 0.000 0.000 1500 kg KN 0.900 2 0.000 0.000	Area ratio Contour Area Lesonance factoer β _Z	of net area and is 62. is 1. 52 Wind at 90 Point 1202 1203 1402 1403 0 of net area a is 72.6 is 1. 52 Wind at 90 Point 1402 1403	nd contour 5 Shape 1 • 1.000 X 16.989 18.735 18.735 18.735	is 39, 7 actor Cxt1 6,000 6,000 6,000 6,000 6,000 1s 37, 1 factor Cxt1 6,000 Y 6,000 Y 6,000 0 0,000	9% is 1, 5 0.00 0.00 0.00 0.00 0.00 1:5 1, 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
1200 Synoptic wind Wind at 90° Point 1200 1201 1400 1401 Synoptic wind Wind at 90° Point 1401 Synoptic wind Wind at 90° Point 1400 1401	Point Height Ft 1.000 X 16.989 18.989 18.989 18.989 18.989 18.989 18.989 18.989 18.989 18.989 18.989 18.989 19.999 19.9997 19.999 19.9999 19.999 19.999 19.999 19.999 19.999 19.9	1200 253, 25 13590, 84 0,000 Y 0,000 0,000 0,000 0,000 1400 244, 5 14988, 37 0,000 Y 0,000 Y 0,000 0,000 0,000	1400 kg KN 0.000 2 0.000 0.000 0.000 1500 kg KN 0.000 2 0.000 0.000 0.000	Area ratio Contour Area Lesonance factoer β _Z Area ratio Contour Area Resonance factoer β _Z	of net area an is 62. is 1. 52 Wind at 90 Point 1202 1203 1402 1403 0 of net area a is 72.6 is 1. 52 Wind at 90 Point 1402 1403 1502	nd contour 5 Shape 1 • 1.000 X 16.989 18.735 18.735 18.735 18.735	is 39, 7 actor Cxt1 6,000 9,000 6,000 6,000 6,000 1s 37, 1 factor Cxt1 6,000 Y 6,000 Y 6,000 0,000 0,000	9% is 1, 5 0.00 0.00 0.00 0.00 0.00 1:5 1, 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

Ĩ.	Section8	Point	1500	1550	Area ratio o	of net area and	contour is	34,88%	
	22	Height	235, 5		Contour Area is	83.01	Shape fac	tor Cxtl is	1.447
	Synoptic wind	Ft	16189.22	kg	Resonance factoer β_7 is	1.52			
2			181 3922	KN		_	1		
	Wind at 90°	1.000	0.000	0.000		Wind at 90°	1.000	0.000	0.000
	Point	X	Y	Z		Point	X	Y	Z
	1500	20.237	0.000	0.000		1502	20.237	0.000	0.000
	1501	20.237	0.000	0.000		1503	20.237	0.000	0.000
	1550	20.237	0.000	0.000		1552	20.237	0.000	0.000
	1551	20.237	0.000	0.000		1553	20.237	0.000	0.000

	Section9	Point	1550	1570	Area ratio of net area and	contour is	27.97%	
		Height	226		Contour Area is 108. 51	Shape fact	or Cxt1 is	1,541
	Synoptic wind	Ft 1	7122, 33 k	ig. N	Resonance factoer $\beta_{\rm Z}$ is 1.53			
	Wind at 90"	1.000	0.000	0.000	Wind at 90°	1.000	0.000	0.000
	Point	X	Y	Z	Point	X	Y	Z
	1550	21.403	0.000	0.000	1552	21.403	0.000	0.000
	1551	21,403	0.000	0.000	1553	21.403	0.000	0.000
	1570	21,403	0.000	0.000	1572	21.403	0.060	0.000
	1571	21.403	0.000	6.000	1573	21.403	0.000	0.000
	Section10	Poin	1570	1700	Area ratio of pet area a	d contour is	17.399	
	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Heigh	t 21	1	Contour Area is 165.7	Shape fa	ctor Cxt1 is	1.739
Ĵ.	Synoptic win	d F	19055.5	1 kg	Resonance factoer β_{z} is 1.52			
5. 6	- NO ORDER - OF		190,555	KN				
	Wind at 90	1.000	0.000	0.000	Wind at 90	1.000	0.000	0.000
	Point	X	Y	Z	Point	X	Y	Z
	1570	23.819	0.000	0.000	1572	23.819	0.000	0.000
	1571	23.819	0.000	0,900	1573	23.819	0.000	0.000
	1700	23.819	0.000	0.000	1702	23.819	0.000	0.000
	1701	23,819	0.000	0.000	1703	23.819	0.000	0.000
	Section11	Point	1700	1750	Area ratio of pet area a	nd contour	s 17.43	*
	8 36 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Height	200		Contour Area is 190. (2 Shape f	actor Cst1	15 1.788
1	Suportic wind	Ft	216.11 79	line	Lesonance factoer B-is 1.52	- outpe a	centra chini	
<u> </u>	synoptic wind	S 👬	21011, 70	17V	contance includer pyra			
	Wind at 002	1.000	0.000	0.000	Wind at 00	0 1.000	0.000	0.000
	Will at SU	1,000	0.000	0.000	Print at Pr	1,000	0.000	0.000
	1700	27.052	0.000	0.000	170m	27.052	0.000	0.000
	1700	37.052	0.000	0.000	1/02	27.052	0.000	0.000
	1701	27.052	0.000	0.000	1705	27.052	0.000	0.000
	1750	27.052	0.000	0.000	1752	27.052	0.000	0.000
	1751	27,052	0.000	0.000	1753	27.052	0.000	0,000
	Synoptic wind	Height Ft	185 26964.37	kg	Contour Area is 230.5 lesonance factoer $\beta_{\rm Z}$ is 1.52	4 Shape fa	ctor Cxt1	is 1.718
	TT: 1 (040	1.000	0.000	KN a cco		1 000	6.000	0.000
	Wind at 90°	1.000	0.000	0.000	Wind at 96	1.000	0.000	
	Point	X		77	Point			0.000
	1750		Y	Z		-	Y	Z
		33.705	9.000	Z 0.000	1752	33.705	Y 6.000	Z 0.000
	1751	33.705 33.705	9.000 0.000	Z 0.000 0.000	1752	33.705 33.705	Y 6.000 6.000	Z 0.000 0.000
	1751 1900	33.705 33.705 33.705	Y 0.000 0.000 0.000	Z 0.000 0.000 0.000	1752 1753 1902	33.705 33.705 33.705 33.705	Y 6,000 6,000 6,000	Z 0.000 0.000 0.000
	1751 1900 1901	33.705 33.705 33.705 33.705 33.705	Y 0.000 0.000 0.000 0.000	Z 0.000 0.000 0.000 0.000	1752 1753 1902 1903	33.705 33.705 33.705 33.705 33.705	Y 6.000 6.000 6.000 6.000	E.000 Z 0.000 0.000 0.000
	1751 1900 1901 Section13 Synoptic wind	33.705 33.705 33.705 33.705 33.705 Point Height Ft	Y 0.000 0.000 0.000 0.000 1900 170, 5 26945, 52	Z 9.000 0.000 0.000 1950	Area ratio of net area an Contour Area is $\frac{258.4}{258.4}$ esonance factoer β_{z} is 1.52	33.705 33.705 33.705 33.705 33.705 33.705 33.705 33.705	Y 6,000 6,000 6,000 6,000 6,000 16,129 ctor Cxt1 i	0.000 Z 0.000 0.000 0.000 0.000 8 5 1.767
	1751 1900 1901 Section13 Synoptic wind	33.705 33.705 33.705 33.705 90int Height Fi	Y 0.000 0.000 0.000 1900 170, 5 26945, 52 0.000	Z 9.000 9.000 9.000 9.000 1950 kg KN	Area ratio of net area an Contour Area is $\frac{258.4}{1.52}$ esonance factoer β_{Z} is $\frac{1.52}{1.52}$	33.705 33.705 33.705 33.705 33.705 33.705 33.705 33.705	Y 6,000 6,000 6,000 6,000 6,000 6,000 6,000 7,000 5 16,125 ctor Cxt1 i	0.000 Z 0.000 0.000 0.000 0.000 0.000
	1751 1900 1901 Section13 Synoptic wind Wind at 90°	33.705 33.705 33.705 33.705 33.705 33.705 Point Height Ft 1.000	Y 0.000 0.000 0.000 1900 170, 5 26945, 52 769 0.000 S	Z 9.000 9.000 9.000 9.000 1950 kg EN EN 9.000	Area ratio of net area an Contour Area is 258.4 esonance factoer β_{Z} is 1.52 Wind at 90	A 33,705 33,705 33,705 33,705 33,705 33,705 d contour is Shape fa	Y 6,000 6,000 6,000 6,000 6,000 7,000 16,125 ctor Cxt1 i 0,000	0.000 Z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 7
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1000	33.705 33.705 33.705 33.705 33.705 33.705 90int Height Ft 1.000 X	Y 0.000 0.000 0.000 1900 170, 5 26945, 52 0.000 Y 0.000 Y	Z 9.000 0.000 9.000 1950 kg FN 6.000 Z	$\begin{array}{c c} & 1752 \\ \hline 1753 \\ \hline 1902 \\ \hline 1903 \\ \hline \end{array}$ Area ratio of net area as Contour Area is $\begin{array}{c} 258.4 \\ \hline 258.4 \\ \hline 1.52 \\ \hline \end{array}$ Wind at 90 Point	A 33.705 33.705 33.705 33.705 33.705 33.705 d contour is 3 Shape fa 1.000 X	Y 6,000 6,000 6,000 6,000 6,000 7,000 8 16,128 Ctor Cxt1 i 0,000 Y	0.000 Z 0.000 0.000 0.000 0.000 0.000 k s 1.767 0.000 Z 0.000
	1751 1900 1901 Section13 Synoptic wind Wind at 90 ⁿ Point 1900 1900	33.705 33.705 33.705 33.705 33.705 33.705 90int Height F1 1.000 X 33.682	Y 0.000 0.000 0.000 1900 170.5 26945.52 26945.52 26945.52 0.000 Y 0.000 Y	Z 9,000 0,000 9,000 1950 kg KN 0,000 Z 0,000 0	$\begin{array}{c c} & 1752 \\ \hline 1753 \\ \hline 1902 \\ \hline 1903 \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	A 33.705 33.705 33.705 33.705 33.705 33.705 d contour is 3 Shape fa 1.000 X 3.3.682	Y 6,000 6,000 6,000 6,000 6,000 16,123 ctor Cxt1 i 0,000 Y 0,000 0,000	0.000 Z 0.000 0.000 0.000 0.000 0.000 k s 1.767 2 0.000 Z 0.000 Z 0.000
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1900 1901	33.705 33.705 33.705 33.705 33.705 33.705 Point Height F1 1.000 X 33.682 33.682	Y 0.000 0.000 0.000 1900 170.5 26945.52 769 0.000 Y 0.000 0.000 0.000	Z 0.000 0.000 0.000 1950 kg EN 0.000 Z 0.000 0.000 0.000	$\begin{array}{c c} & 1752 \\ 1753 \\ 1902 \\ 1903 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	A 33.705 33.705 33.705 33.705 33.705 d contour is 3 Shape fa 1.000 X 33.682 33.682 1.000	Y 6,000 6,000 6,000 6,000 6,000 16,123 ctor Cxt1 i 0,000 Y 0,000 0,000	0.000 Z 0.000 0.000 0.000 0.000 0.000 k s 1.767 2 0.000 Z 0.000 2 0.000 0.000
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1900 1901 1950	33.705 33.705 33.705 33.705 33.705 Point Height 1.000 X 33.682 33.682 33.682 33.682 33.682	Y 0.000 0.000 0.000 1900 170.5 26945.52 700 5000 Y 0.000 0.000 0.000 0.000	Z 0.000 0.000 0.000 1950 kg KM 0.000 Z 0.000 0.000 0.000 0.000	$\begin{bmatrix} 1752 \\ 1753 \\ 1902 \\ 1903 \\ \end{bmatrix}$ Area ratio of net area an Contour Area is 258.4 esonance factoer β_Z is 1.52 Wind at 90 Point 1902 1903 1952 1952	A 33.705 33.705 33.705 33.705 33.705 33.705 d contour is A L000 X 33.682 33.682 33.682 33.682	Y 6,000 6,000 6,000 6,000 7 16,123 Ctor Cxt1 i 0,000 Y 0,000 0,000 0,000	0.000 Z 0.000 0.000 0.000 0.000 0.000 k 5 1.767 2 0.000 0.000 0.000 0.000
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1900 1901 1950 1951	33.705 33.705 33.705 33.705 33.705 33.705 Point Height Height 1.000 X 33.682 33.682 33.682 33.682	Y 0.000 0.000 0.000 1900 170.5 26945.52 0.000 Y 0.000 0.000 0.000 0.000	Z 0.000 0.000 0.000 1950 ke EN 0.000 Z 0.000 0.000 0.000 0.000	$\begin{bmatrix} 1752 \\ 1753 \\ 1902 \\ 1903 \end{bmatrix}$ Area ratio of net area an Contour Area is 258.4 esonance factoer β_Z is 1.52 Wind at 90 Point 1902 1903 1952 1953	A 33.705 33.705 33.705 33.705 33.705 33.705 d contour 12 3 Shape fa 4 1.000 X 33.682 33.682 33.682 33.682	Y 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 0,000 0,000 0,000 0,000 0,000 0,000	0.000 Z 0.000 0.000 0.000 0.000 0.000 x 5 1.767 0.000 Z 0.000 0.000 0.000 0.000 0.000
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1900 1901 1950 1951 Section14 Synoptic wind	33.705 33.705 33.705 33.705 33.705 33.705 Point Height 1.000 X 33.682 33.682 33.682 33.682 Boint Height Height Ft	Y 0.000 0.000 0.000 1900 170, 5 26945, 52 0.000 Y 0.000 0.000 0.000 0.000 0.000 1950 155 39218, 2	Z 0.000 0.000 0.000 1950 kg KN 0.000 Z 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.000000 0.000000 0.0000 0.0000	1752 1753 1902 1903 Area ratio of net area as Contour Area is 258.4 esonance factoer β_Z is 1.52 Wind at 90 Point 1902 1903 1902 1903 1952 1953 Area ratio of net area as Contour Area is 306.3 lesonance factoer β_Z is 1.52	X 33.705 33.705 33.705 33.705 33.705 33.705 33.705 33.705 33.705 33.705 33.705 33.705 33.682 33.682 33.682 33.682 33.682 33.682 33.682	Y 6,000 6,000 6,000 6,000 6,000 6,000 5 16,125 ctor Cxt1 i 0,000 X 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 x 0,000 0,000 0,000 5 16,125 x 0,000 0,000 6,000 8,000 8,000 8,000 6,000 8,0000 8,0000 8,0000 8,000 8,000 8,000 8,0000 8,00000000	0.000 Z 0.000 0.000 0.000 0.000 0.000 0.000 k 5 1.767 0.000 0.000 0.000 k 0.000 k 0.000 k 0.000 0.000 0.000 0.000 0.000 k 1.655
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Pelint 1900 1901 1950 1951 Section14 Synoptic wind	33.705 33.705 33.705 33.705 33.705 33.705 Point Height 1.000 X 33.682 33.682 33.682 Point Height Height Ft	Y 0.000 0.000 0.000 1900 170, 5 26945, 52 0.000 Y 0.000 Y 0.000 0.000 0.000 0.000 0.000 1950 155 39213, 2 2922	Z 0.000 0.000 0.000 1950 kg EN 0.000 Z 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.000000 0.000000 0.0000 0.0000	1752175319021903Area ratio of net area as Contour Area is258.4esonance factoer β_Z is1.52Wind at 90Point1902190319521953Area ratio of net area as Contour Area is306.3 tesonance factoer β_Z is1.52	A 33.705 33.705 33.705 33.705 33.705 33.705 d contour is 1.000 X 33.682 33.682 33.682 33.682 33.682 33.682 33.682 33.682	Y 6,000 6,000 6,000 6,000 6,000 7 16,127 ctor Cxt1 i 0,000 7 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0.000 Z 0.000 0.000 0.000 0.000 0.000 x 5 1.767 2 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.000000
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1900 1901 1950 1951 Section14 Synoptic wind Wind at 90°	33.705 33.705 33.705 33.705 33.705 33.705 Point Height 1.000 X 33.682 33.682 33.682 Boint Height Pt 1.000	Y 0.000 0.000 0.000 1900 170.5 26945.52 0.000 Y 0.000 Y 0.000 0.000 0.000 0.000 1950 155 39213.2 950 155	Z 0.000 0.000 0.000 1950 kg EN 0.000 Z 0.000 0.000 0.000 2100 kg EN 2100 0.000	$\begin{array}{c c} 1752\\ 1753\\ 1902\\ 1903\\ \hline \end{array}$ Area ratio of net area as Contour Area is 258.4 esonance factoer β_Z is 1.52 $\hline \hline \\ \hline$	A 33.705 33.705 33.705 33.705 33.705 33.705 d contour is 1.000 X 33.682 34.682 34.682 35.	Y 6,000 6,000 6,000 6,000 6,000 7 16,123 Ctor Cxt1 i 0,000 Y 0,000000	0.000 Z 0.000 0.000 0.000 0.000 0.000 z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1900 1901 1950 1951 Section14 Synoptic wind Wind at 90° Point	33.705 33.705 33.705 33.705 33.705 33.705 Point Height 1.000 X 33.682 33.682 33.682 33.682 Boint Height Ft 1.000 X Point	Y 0.000 0.000 0.000 1900 170.5 26945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 76945.52 769555.52 76955.52 769555.52 769555.52 769555.52 769555.52 7695	Z 0.000 0.000 0.000 1950 kg KM 0.000 Z 0.000 0.000 0.000 0.000 2100 kg KN 0.000 2.000 0.0000 0.00000 0.000000 0.000000 0.0000 0.0000	$\begin{array}{c c} 1752\\ 1753\\ 1902\\ 1903\\ \hline \end{array}$ Area ratio of net area as Contour Area is 258.4 esonance factoer β_Z is 1.52 $\hline \hline \\ \hline$	A 33.705 33.705 33.705 33.705 33.705 33.705 33.705 4 contour is 3 Shape fa 1.000 X 33.682	Y 6,000 6,000 6,000 6,000 6,000 7 16,123 Ctor Cxt1 i 0,000 Y 0,000000	0.000 Z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k 5 1.767 0.000 0.000 0.000 Z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1900 1951 Section14 Synoptic wind Wind at 90° Point 1950	33.705 33.705 33.705 33.705 33.705 33.705 Point Height 1.000 X 33.682 33.682 33.682 33.682 Boint Height Ft 1.000 X 49.017	Y 0.000 0.000 0.000 1900 170, 5 26945, 52 749 0.000 Y 0.000 0.000 0.000 0.000 0.000 1950 155 39213, 2 955 155 39213, 2 9,000 Y 0.000	Z 0.000 0.000 0.000 1950 kg KN 0.000 2.000 kg KN 0.000 2.100 kg KN 0.000 2.000 2.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 00	$\begin{array}{c c} 1752\\ 1753\\ 1902\\ 1903\\ \hline \end{array}$ Area ratio of net area ar Contour Area is 258.4 esonance factoer β_Z is 1.52 $\hline \hline \\ \hline$	A 33.705 33.705 33.705 33.705 33.705 33.705 33.705 4 contour is 1.000 X 33.682 3.682 3.6	Y 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 0,000	0.000 Z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.0000
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1950 1951 Section14 Synoptic wind Wind at 90° Point 1950 1951	33.705 33.705 33.705 33.705 33.705 33.705 Point Height 1.000 X 33.682 33.682 33.682 33.682 33.682 1.000 X 49.017 49.017	Y 0.000 0.000 0.000 1900 170.5 26945.52 0.000 Y 0.000 0.000 0.000 0.000 1950 155 39218.2 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	Z 0.000 0.000 0.000 1950 kg FN 0.000 Z 0.000 0.000 0.000 kg IN 0.000 Z 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.0000000 0.00000000	$\begin{bmatrix} 1752\\ 1753\\ 1902\\ 1903\\ 1903\\ \end{bmatrix}$ Area ratio of net area as Contour Area is 258.4 esonance factoer β_Z is 1.52 $\begin{bmatrix} Wind at 90\\ Point\\ 1902\\ 1903\\ 1952\\ 1953\\ \end{bmatrix}$ Area ratio of net area as Contour Area is 306.3 kesonance factoer β_Z is 1.52 $\begin{bmatrix} Wind at 90\\ Point\\ 1902\\ 1953\\ 1953\\ \end{bmatrix}$	A 33.705 33.705 33.705 33.705 33.705 33.705 33.705 d contour is 1.000 X 33.682 3.682 3.6	Y 6,000 6,000 6,000 6,000 6,000 6,000 5 16,125 Ctor Cxt1 i 0,000 7 0,000000	0.000 Z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 0.000
	1751 1900 1901 Section13 Synoptic wind Wind at 90° Point 1900 1901 1950 1951 Section14 Synoptic wind Wind at 90° Point 1950 1951 2100	33.705 33.705 33.705 33.705 33.705 33.705 Point Height 1.000 X 33.682 33.682 33.682 33.682 33.682 1.000 X 49.017 49.017 49.017	Y 0.000 0.000 0.000 1900 170.5 26945.52 0.000 Y 0.000 0.000 0.000 0.000 1950 155 39213.2 0.000 Y 0.000 Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000 0.00000000	Z 0.000 0.000 0.000 1950 kg FN 0.000 2.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	$\begin{bmatrix} 1752 \\ 1753 \\ 1902 \\ 1903 \\ \end{bmatrix}$ Area ratio of net area as Contour Area is 258.4 esonance factoer β_Z is 1, 52 Wind at 90 Point 1902 1903 1952 1953 \\ Area ratio of net area as Contour Area is 306.3 tesonance factoer β_Z is 1, 52 Wind at 90 Point 1952 1953 \\ \end{bmatrix}	A 33.705 33.705 33.705 33.705 33.705 33.705 33.705 d contour is 3 Shape fa 3.3.682 33.682	Y 6,000 6,000 6,000 6,000 6,000 6,000 7 0,000000	0.000 Z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 0.000 0.000

Section15	Point	2100	2200	Area ratio	of net area an	d contour is	19.79	N.
in in the second	Height	139, 5		Contour Area is	\$16.06	Shape fa	ctor Cxt1 i	s 1,698
Synoptic wind	. Ft	\$7386.67	kg	Resonance factoer p_2 is	1,52	1		
	1.000	973 BEE7	KN	-T S		1.000	0.000	
Wind at 90*	1.000	0.000	0.000	+	Wind at 98.	1.000	0.000	0.000
Feint	A	0.000	0.000	-	Point	A (6.51)	1 0.000	0.000
2100	40,733	0.000	0.000		2102	40.733	6.000	0.000
1101	40,/33	0.000	0.000		2105	40.733	0.000	0.000
1200	40.733	0.000	0.000	-	1202	40.733	0.000	0.000
4601	40.755	0.000	0.000	+	*****	40,755	0.000	0.000
Bartingth	Daint	0000	0000	Arra catio	f and some as	d and and	20 56	ter.
SCEROILLO	Think	2200	2000	Alta Tatto			S 20, 0	10
0	Height	128.8		Contour Area is	5	snape a	actor CXII	15 1.070
Synoptic Wind	FI	37599.54	kg	(esonance factoer $p_{\rm Z}$ is	s 1. 52	-		
1112 3 000	1.000	0.000	KN 0.000	া	NT	1 000	6 346	2 000
wind at 90	1.000	0.000	0.000		Wind at 99	1.000	0.000	0.000
Point	<u> </u>	¥	L	-	Point	A	X	L 0.000
2200	40.999	0.000	0,000		1202	40.999	0.000	0.000
2201	40.999	0.000	0.000		2203	40.999	0.900	0.000
2300	46.999	0.000	0.000		2302	46.999	0.000	0.000
2501	46.999	0.000	0,000		2303	40.999	0.000	0.000
· · · · · · · · · · · · · · · · · · ·	-	-		- 28 - 68	88	8	5 F	-
Section17	Point	2300	2400	Asea ratio	of net area a	nd contour	is 15.92	296
10	Height	112.5		Contour Area is	\$ 353.6	8 Shape fa	actor Cxt1	is 1.77
Synoptic wind	Ft	34062.77	kg	lesonance factoer β_{z} is	1.52			
2		340.6277	EN					547
Wind at 90°	1.000	0.000	0.000		Wind at 90	1.000	0.000	0.000
Point	Х	Y	Z		Point	X	Y	Z
2300	42.578	0.000	0.000		2302	42.578	0.000	0.000
2301	42.578	0.000	0.000		2303	42.578	0.000	0.000
2400	42.578	0.000	0.000		2402	42.578	0.000	0.000
2401	42.578	0.000	0.000		2403	42.578	0.000	0.000
Synoptic wind	Height Ft	42723.98	kg	Resonance factoer β_Z is	s 418.3 s 1.52	Shape ta	actor Cxt1	15 1. 754
1700		127.2298	KN	-	No Sugar			
Wind at 90°	1,000	0.000	0.000	-	Wind at 90	1.000	0.000	0.000
Point	X	Y	Z		Point	X	Y	Z
2400	53,405	0.000	0.000		2402	53,405	0.000	0.000
2401	53.405	0.000	0.000		2403	53,405	0.000	0.000
2500	53.405	0.000	0.000	-	2502	53.405	0.000	0.000
2501	53,405	0.000	0.090	4	2503	53.405	0.000	0.000
CONTRACTOR OF A		0000	0000	-		e a consecutor de	13.000	1
Section 19	Pom	2500	2000	Area 1ano o	i net alea aik	Comou is	14. 33%	1.000
	Heigh	85	-	Contour Area is	437.61	Shape rac	Tor CXII is	1,808
Synoptic wind	I F	1 36948.34	kg	esonance factoer $p_{Z^{1S}}$	1.52	5		
Carry on the second		359 4834	KN	1 1			(All All All All All All All All All All	
Wind at 90°	1.000	0.000	0.000	-	wind at 90°	1.900	0.000	0.000
Point	A	1	L	-	Point	10100	1	L
2500	40.185	0.000	0.000	-	2592	40.185	0.000	0.000
2501	40.185	0.000	0,000	-	2595	40.185	0.000	0.000
2600	46.185	0.000	0.000	-	1001	40.185	0.000	0.000
2001	40.185	0.000	0.000	+	2005	40,105	0.000	0.000
Section 20	Pon	at 2600	2700	Area ratio o	f net area and	contour is	18.24%	
	Heiot	71	5	Contour Area is	440, 91	Shape fact	or Cxt1 is	1.720
Synoptic win	d I	43813	3 kg	lesonance factoer B-is	1, 52	-maps see		
o juopae wit		100101	KN	workanse mener PZIS	1,00			
Wind at 90	° 1.000	0.060	0.000		Wind at 90°	1.000	0,000	0,000
Point	X	Y	Z	1	Point	X	Y	Z
2600	64.767	0.000	0.000	1	1602	21.767	0.000	0.000
2501		0.000	0.000		2002	54.707	0.000	0.000
2001	54.767	0.000	0.000	-	2603	54.767	0.000	0.000
2700	54.767 54.767	0.000	0.000		2603 2702	54.767 54.767	0.000 0.000	0.000

54.767

0.000

0.000

2703

0.000

54.767

2701

0.000

Synoptic wind	Ft	34389.83	kg	tesonance factoer $eta_{ m Z}$ is	1.52			
Wind at 90°	1.000	0.000	0.000		Wind at 90°	1.000	0.000	0.000
Point	X	Y	7		Point	x	Y	7
2700	42.987	0.000	0.000	2	2792	42.987	0.000	6.060
2701	42.987	0.000	0.000	0	2703	42.987	0.000	0.000
2800	42.987	0.000	0.000	0.	2802	42.987	0.000	0.000
2801	42.987	0.000	0.000	8	2803	42,987	0.000	0.000
Synoptic wind	Height	40 8285, 28 k	e.	Contour Area is Resonance factoer β_Z is	961.74 1.52	Shape fa	ctor Cxtl i	s 1.7
Synoptic wind	Height Ft 70	40 8285, 28 kg 82, 88, 28 Kj 9,000	e N 0.000	Contour Area is Resonance factoer β_Z is	961.74 1.53 Wind at 90°	Shape fa	etor Cxtl i	s 1.7
Synoptic wind Wind at 90° Point	Height Ft 70 1.000 X	40 8285, 28 kg 81, 46, 28 Kj 9,000 Y	z N 0.000 Z	Contour Area is Resonance factoer eta_Z is	961.74 1.52 Wind at 90° Point	Shape fa 1.000 X	octor Cxtl i 0.000 Y	s <u>1.7</u> 0.0
Synoptic wind Wind at 90° Point 2800	Height Ft 71 1.000 X 97.857	40 8285, 28 ki 80, 85, 28 ki 9,000 Y 9,000	z 0.000 Z 0.000	Contour Area is Resonance factoer eta_Z is	961.74 1.52 Wind at 90° Point 2802	Shape fa 1.000 X 97.857	0.000 Y 0.000	s 1. 7 0.00 Z
Synoptic wind Wind at 90° Point 2800 2801	Height Ft 70 1.000 X 97.857 97.857	40 8285, 28 kg 9,000 Y 0,000 0,000	z 0.000 Z 0.000 0.000	Contour Area is Resonance factoer β_Z is	961.74 1.52 Wind at 90° Point 2802 2803	Shape fa 1.000 X 97.857 97.857	0.000 Y 0.000 0.000	s 1. 7 0.00 Z 0.00
Synoptic wind Wind at 90° Point 2800 2801 2900	Height Ft 70 1.000 X 97.857 97.857 97.857	40 8285, 28 k; 80,000 3 0,000 0,000 0,000	z 0.000 Z 0.000 0.000 0.000	Contour Area is Resonance factoer β_Z is	961.74 1.52 Wind at 90° Point 2802 2803 2902	Shape fa 1.000 X 97.857 97.857 97.857	ector Cxt1 i 0.000 Y 0.000 0.000 0.000	s 1.7 0.00 2 0.00 0.00
Synoptic wind Wind at 90° Point 2800 2801 2900	Height Ft 70 1.000 X 97.857 97.857 97.857	40 8285, 28 kg 0,000 X 0,000 0,000 0,000	e 0.000 Z 0.000 0.000 0.000	Contour Area is Resonance factoer β_Z is	961.74 1.52 Wind at 90° Point 2802 2803 2902	Shape fa 1.000 X 97.857 97.857 97.857	0.000 Y 0.000 0.000 0.000	s 1. 5 0.0 0.0 0.0 0.0
Synoptic wind Wind at 90° Point 2800 2801 2900 2901	Height Ft 71 1.000 X 97.857 97.857 97.857 97.857 97.857	40 82285, 28 ki 0.000 Y 0.000 0.000 0.000 0.000	z 0.000 Z 0.000 0.000 0.000 0.000	Contour Area is Resonance factoer β_Z is	961.74 1.62 Wind at 90° Point 2802 2803 2902 2903	Shape fa 1.000 X 97.857 97.857 97.857 97.857	0.000 Y 0.000 0.000 0.000 0.000	s <u>1.7</u> 0.0 0.0 0.0 0.0 0.0

Wind at 90°

Point

2900

2901

3900

3901

1.000

х

97.185

97.185

97.185

97.185

0.000

Y

0.000

0.000

0.000

0.000

0.000

z

0.000

0.000

0.000

0.000

Wind at 90°	1.000	0.000
Point	X	Y
2902	97.185	0.000
2903	97.185	9.000
3902	97.185	0.000
3903	97.185	0.000

0.000

Z 0.000

0.000

0.000

0.000

-, The Divition of Elevator Frame

Figura B.2 – Divisão da Estrutura do Elevador

	Height	289 5		contour Area	22 56	shane	factor C	xt1	1.34
Synoptic wind	Ft	5473 005	log	Height of The Section	9.1	resonance	factoer/	3. 1	. 52
ojnopile (1210		54 /3005	KN		0.1	i coomance		2	
Wind at 90°	1.000	0.000	0.000		Wind at 90°	1.000	0.000	0.	000
Point	X	Y	Z		Point	X	Y		Z
600	13.683	0.000	0.000		602	13.683	0.000	0.	000
601	13.683	0.900	0.000		603	13.683	0.000	0,	000
ection 3	Poin	900		Arear	atio of net an	rea and co	ntour	44. 509	
	Heigh	it 2	73	contour Ar	ea 38	.76 s	hape fac	ctor Cxtl	1
Synoptic wind	F	1 9311.3	86 kg	Height of The Secti	on 16	15 reson	ance fac	ctoer B-	1
	t 1	93 113	So KN	n an				r 2	
Wind at 90°	1.000	0.000	0.000]	Wind at	90° 1.0	00	0.000	0
Point	X	Y	Z]	Point		x	Y	
900	23.278	0.000	0.000	1	902	23.	278	0.000	0
901	23.278	0.000	0.000]	903	23.3	278	0.000	0
Section 5	Po	int 130	0	Area i	atio of net a	rea and co	ntosur	44.50%	
	Hei	ght 26	0.9	contour A	rea 22	. 68 s	hape fac	ctor Cxt1	1.
Synoptic wir	ıd	Ft 5407.	364 kg	Height of The Sect	ion 9	. 45 reson	ance fac	toer B7	1.
2 <u></u>	-275	64.07	Set KN	-		20		1.5	2
Wind at 90	0 1.00	0.00	0 0.000	<u>)</u>	Wind at	90° 1.0	00	0.000	0.
Point	X	Y	Z		Point		2	Y	-
1300	13.5	0.00	0.000	<u> </u>	1302	13.5	518	0.000	0.
1301	13.5	18 0.00	0 0.000	0	1303	13.5	518	0.000	0.
Wind at 90°	1.000	0.000	1Kg 12N 0.000		26. Wind at 90)° 1.000	0.0	102	0.0
Wind at 90°	1.000	0.000	Kg KDi 0.000		26. Wind at 90)° 1.000	0.0		0.0
Wind at 90° Point	1.000 X	130-157 0.000 Y	Kg KN 0.000 Z 0.000		Wind at 90 Point)° 1.000 X	0.0	000 Y	0.0
Wind at 90° Point 1490 1491	1.000 X 37.614 37.614	0.000 Y 0.000 0.000 0.000	Kg 0.000 Z 0.000 0.000		Wind at 90 Point 1492 1493	b resonan 10 1.000 X 37.614 37.614	0.0 0.0 1 0.0 1 0.0	200 Y 200 200 200 200	0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90°	1.000 X 37.614 37.614 900 Heig 1 1.000	1693.76 0.000 Y 0.000 0.000 0.000 1690 ht 16950. 17500. 1750	Rg IO1 0.000 Z 0.000 0.000 0.000 214 12 Kg KN 0.000	Area contour A Height of The Sect	Wind at 90 Point 1492 1493 ratio of net 1 rea 78.4 ion 30. Wind at 9.	Siresonan 1000 X 37.614 37.614 37.614 area and c 1856 619 90° 1.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	44, 50 44, 50 44, 50 actor Cat $actor Cat actor S$	0.0 0.0 0.0 0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1600	1.000 X 37.614 37.614 901 Heig 1 1.000 X X	16913.76 0.000 Y 0.000 0.000 0.000 1690 ht 16950. 169	IN IN 0.000 Z 0.000 0.000 0.000 214 12 Kg IN 0.000 0.000	Area contour A Height of The Sect	Wind at 90 Point 1492 1493 ratio of net : rea 73. ion \$0. Wind at Point	3 resonant 1° 1.000 X 37.614 37.614 37.614 1856 619 619 reso 90° 1. t 12	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c c} & 2 \\ $	0.0 0.0 0.0 %
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691	1.000 X 37.614 37.614 Por Heig 1 1.000 X 42.375 42.375	16903.76 0.000 Y 0.000 0.000 1690 ht 16950. 16	IKg EN 0.000 Z 0.000 0.000 214 12 EN 0.000 Z EN 0.000 Z 0.000	Area contour A Height of The Sect	Wind at 90 Point 1492 1493 ratio of net : rea 78.4 ion 30. Wind at Point 1692 1693	3 resonant 1° 1.000 X 37.614 37.614 37.614 arrea and c 1856 619 reso 90° 1. t 42 42 42	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	44.50 300 44.50 3000 44.50 3000 44.50 3000 44.50 3000 44.50 3000 44.50 3000 44.50 3000 3000 Y 30000 Y 30000	0.0 0.0 0.0 %
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 cettion 8 Synoptic wind	1.000 X 37.614 37.614 902 Heigh 1.000 X 42.375 42.375 Poir Heigh F	18013.76 0.000 Y 0.000 0.000 0.000 1690 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16950. 169000 16900 16900 169000 169000 169000 169000 169000 169000 16	ICN 0.000 Z 0.000 0.000 0.000 214 12 kg 12 kg 12 kg 0.000 0.000 214 12 kg 0.000 0 0.000 0.000 85 55 kg Kg	Area contour A Height of The Sect	Wind at 90 Point 1492 1493 ratio of net 3 rea 73.4 ton 80. Wind at Point 1692 1693 ratio of net a rea 70.7 100 29.	3 resonant 10° 1.000 X 37.614 37.614 37.614 area and c 1856 819 reso 90° 1. t 42 422 42 476 reso	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c c} 44, 50 \\ \hline 44, 50 \\ \hline 44, 50 \\ \hline actor Cxt \\ actoer \beta \\ \hline 0.000 \\ \hline Y \\ 0.000 \\ \hline 44, 50 \\ \hline actoer \beta \\ \hline actor Cxt \\ actoer \beta \\ \hline actor Cxt \\ actoer \beta \\ \hline actoer b \\ \hline actoer b \\ \hline actoer b \\ \hline actoer b $	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 Synoptic wind Synoptic wind	1.000 X 37.614 37.614 37.614 Por Heigh 1.000 X 42.375 42.375 Poin Heigh F 1.000 I I I I I I I I I I I I I	10013.70 0.000 Y 0.000 0.000 0.000 1690 1690 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16900 Y 5 0.000 Y 5 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1890.55 0.000 1990.55 0.000 0.000 1990.55 0.000 1990.55 0.000 1990.55 0.000 1990.55 0.000 1990.55 0.000 1990.55 0.000 1990.55 0.000 1990.55 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.00000 0.00000 00	Rg IO1 IO1 0.000 Z 0.000 0.000 214 12 Kg IO2 IO2 0.000 Z 0.000 Z 0.000 Z 0.000 Z 0.0000 Z 0.0000 Z 0.0000 Z 0.0000 Z X <tr< td=""><td>Area contour A Height of The Sect</td><td>Wind at 90 Point 1492 1493 ratio of net 1 rea 73.4 ton 80, Wind at Point 1692 1693 ratio of net a rea 70.7 100 29. Wind at</td><td>3 resonant 1° 1.000 X 37.614 37.614 37.614 area and c 1856 619 reso 90° 1. t 42 42 42 476 reso 90° 1.1</td><td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>$\begin{array}{c c}$</td><td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td></tr<>	Area contour A Height of The Sect	Wind at 90 Point 1492 1493 ratio of net 1 rea 73.4 ton 80, Wind at Point 1692 1693 ratio of net a rea 70.7 100 29. Wind at	3 resonant 1° 1.000 X 37.614 37.614 37.614 area and c 1856 619 reso 90° 1. t 42 42 42 476 reso 90° 1.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} $	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 Cection 8 Synoptic wind Wind at 90° Point	1.000 X 37.614 37.614 37.614 Por Heigh 1.000 X 42.375 42.375 Poin Heigh F 1.000 X	10013.70 0.000 Y 0.000 0.000 0.000 1690 1690 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16900 Y 5 0.000 Y 18900 115925. 15925. 15925. 0.000 Y	Rg IOI IOI 0.000 Z 0.000 0.000 214 12 Kg IOI IOI 0.000 Z 0.000 Z 0.000 Z 0.000 Z 0.0000 Z S5 S5 Kg NO 0.0000	Area contour A Height of The Sect	Wind at 90 Point 1492 1493 ratio of net 1 rea 73.4 ton 80, Wind at Point 1692 1693 ratio of net a rea 70.7 100 29. Wind at Point 29.	3 resonant 1° 1.000 X 37.614 37.614 37.614 area and c 1856 619 reso 90° 1. t 42 42 42 476 reso 90° 1.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} $	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 Cection 8 Synoptic wind Wind at 90° Point 1890	1.000 X 37.614 37.614 Pop Heig 1 1.000 X 42.375 42.375 Poir Heigl F 1.000 X 39.813	10013. 70 0.000 Y 0.000 Y 0.000 N 1690 bt 1591 1692 0.000 Y 0.000 Y 0.000 Y 1890 11925. 0.000 Y 0.000 Y 0.000	Rg EN 0.000 Z 0.000 0.000 214 12 LS EN 0.000 Z14 12 LS EN 0.000 Z 0.000 S5 S5 LS EN 0.0000 Z 0.0000	Area contour A Height of The Sect Area Contour A Height of The Sect	Wind at 90 Point 1492 1493 ratio of net 1 rea 73.4 ton 80. Wind at Point 1692 1693 ratio of net a rea 70.7 100 29. Wind at Point 1692 1693 ratio of net a rea 70.7 29. Wind at Point 1892	3 resonant 10° 1.000 X 37.614 37.614 37.614 area and c 1856 619 reso 90° 1. t 42 42 42 area and c 424 476 reso 90° 1.4 430 1.4 430 1.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} 44.50 \\ \hline 44.50 \\ \hline actor Cxt \\ \hline actoer \beta \\ \hline 0.000 \\ \hline Y \\ \hline 0.000 \\ \hline 44.50 \\ \hline 0.000 \\ \hline 44.50 \\ \hline 0.000 \\ \hline 0.000 \\ \hline \hline 0.00$	0.0 0.0 0.0 0.0 5 11 1 7
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 cottion 8 Synoptic wind Wind at 90° Point 1890 1891	1.000 X 37.614 37.614 Por Heig 1.000 X 42.375 42.375 Poir Heigl F 1.000 X 39.813 39.815	10013.70 0.000 Y 0.000 0.000 0.000 1690 1690 16950. 16950. 16950. Y 0.000 Y 0.000 Y 15925. 15055 0.000 Y 0.000 Y 0.000 0.000	Kg EN 0.000 Z 0.000 214 12 kg KN 0.000 Z 0.000 X 0.000 Z 0.0000	Area contour A Height of The Sect	Wind at 90 Point 1492 1492 1493 ratio of net : rea 73. ion 80. Wind at Point 1692 1693 ratio of net a rea 70.7 100 29. Wind at Point 1692 1893	aresonan 10 1.000 X 37.614 37.614 37.614 37.614 37.614 37.619 reso 1856 619 619 reso 90° 1. 42 42 424 426 90° 1.4 90° 1.4 424 476 90° 1.4 90° 1.4 90° 1.4 90° 1.4 90° 1.4 90° 1.4 90° 1.4 90° 1.4 90° 1.4 90° 1.4 90° 1.4 3.9 3.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 cettion 8 Synoptic wind Wind at 90° Point 1890 1891 cettion 9	1.000 X 37.614 37.614 37.614 Por Heigh 1.000 X 42.375 42.375 42.375 Point Height 1.000 X 39.813 39.815 Point Height Height	10013.70 0.000 Y 0.000 0.000 1690 1690 1690 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16900 Y 0.000 Y 15925. 15955. 12559. 12559. 1555. 12559. 1555.	Rg EN 0.000 Z 0.000 0.000 214 12 kg EN 0.000 Z 0.000 214 12 kg EN 0.000 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 4 KN	Area Contour A Height of The Sect Area Contour A Height of The Sect Area ra Contour Ar Height of The Sector	Wind at 90 Point 1492 1493 ratio of net : rea 73. ion 80. Wind at Point 1692 1693 ratio of net at rea 70.7 1692 1693 wind at Point 1892 1893 tho of net at ca 57. on 23.	and resonant 10° 1.000 X 37.614 37.614 37.614 37.614 37.614 1856 619 619 reso 90° 1. 42 42 42 42 90° 1. 42 42 90° 1. 42 42 90° 1. 42 39. 90° 1. 90° 1. 42 42 90° 1. 90° 1. 42 42 90° 1. 39. 39. 39. 39. 905 reson 372 \$ 905 reson	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c c} 44, 50 \\ \hline 44, 50 \\ \hline 300 \\ \hline 44, 500 \\ \hline 300 \\ \hline 44, 500 \\ \hline 500 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ \hline 52 \\ $	1. 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 cction 8 Synoptic wind Wind at 90° Point 1890 1891 ction 9 Synoptic wind Wind at 90°	1.000 X 37.614 37.614 37.614 Por Heigh 1.000 X 42.375 42.375 42.375 42.375 Point Height Feight Feight Feight 1.000 X 39.813 39.813 Spoint Height Feigh	10013.70 0.000 Y 0.000 Y 0.000 Y 0.000 N 1690.000 Ft 1695.90 Y 0.000	Rg EN 0.000 Z 0.000 214 12 EN 0.000 214 12 EN 0.000 Z 0.0000 Z Z Z Z Z Z Z	Area Contour A Height of The Sect Area Contour A Height of The Sect Area ra Contour Ar Height of The Sects	Wind at 90 Point 1492 1493 ratio of net : rea 73 ion 80. Wind at Point rea 73 ion 80. Wind at Point 1692 1693 ratio of net at rea 70. 7 29. Wind at Point 1893 thio of net at ea 57. yind at Wind at	and resonant 10° 1.000 X 37.614 37.614 37.614 37.614 37.614 1856 619 619 reso 90° 1. t 42 424 424 90° 1.01 424 39.05 90° 1.01 1000 39.05 305 reson	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 β_Z 000 Y 000 44, 50 actor Cxt actor Cxt actor Cxt 0.000 Y 0.000 44, 50 0.000 44, 50 0.000 44, 50 ctoer β_2 0.000 44, 50 ctoer β_2 0.000	1. 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 cction 8 Synoptic wind Wind at 90° Point 1890 1891 cction 9 Synoptic wind Wind at 90° Point	1.000 X 37.614 37.614 37.614 Por Heigh 1.000 X 42.375 42.375 42.375 42.375 1.000 X 39.813 39.813 Spoint Height Feight Feight 1.000 X 39.813 Spoint Height Feight Spoint Height Feight Spoint Height Spoint Height Spoint Height Spoint Height Spoint Sp	10013. 70 0.000 Y 0.000 Y 0.000 N 1690 bt 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 110000 110000 110000 1100000 1100000 1100000 1100000 1100000 1100000 11000000 1100000000000000000000000000000000000	Rg EN 0.000 Z 0.000 0.000 214 12 LS EN 0.000 Z14 12 LS EN 0.000 Z 0.000 Z 0.000 Z 0.000 Z 0.000 Z 0.000 Z 0.0000 Z 0.0000 Z 0.0000 Z 0.0000 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z </td <td>Area Contour A Height of The Sect Area Contour A Height of The Sect Area ra Contour Ar Height of The Sects</td> <td>Wind at 90 Point 1492 1492 1493 ratio of net 1 rea 73.4 ion 80. Wind at Point 1692 1693 ratio of net at rea 70.7 100 29. Wind at Point 1893 atio of net at ca 57. on 23.*</td> <td>and resonant 10° 1.000 X 37.614 37.614 37.614 37.614 37.614 1856 619 619 reso 90° 1. 42 424 476 reso: 90° 1.// 39, 39, 39, 39, 39, 39, 39, 39, 905 reson 905 reson 906 1.0</td> <td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>$a_{J} p_{Z}$ $b00$ V $b00$ v $b00$ v $b00$ v $b000$ v v</td> <td>0.0 2 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>	Area Contour A Height of The Sect Area Contour A Height of The Sect Area ra Contour Ar Height of The Sects	Wind at 90 Point 1492 1492 1493 ratio of net 1 rea 73.4 ion 80. Wind at Point 1692 1693 ratio of net at rea 70.7 100 29. Wind at Point 1893 atio of net at ca 57. on 23.*	and resonant 10° 1.000 X 37.614 37.614 37.614 37.614 37.614 1856 619 619 reso 90° 1. 42 424 476 reso: 90° 1.// 39, 39, 39, 39, 39, 39, 39, 39, 905 reson 905 reson 906 1.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$a_{J} p_{Z}$ $b00$ V $b00$ v $b00$ v $b00$ v $b000$ v	0.0 2 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 cetion 8 Synoptic wind Wind at 90° Point 1890 1891 ction 9 Synoptic wind Wind at 90°	1.000 X 37.614 37.614 37.614 Por Heigh 1.000 X 39.813 39.813 S9.813 Point Height Fr 1.000 X 39.813 39.813 S9.814 S	10013. 70 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.000 Print 1690 Print 0.000 Y 0.000	Rg EN 0.000 Z 0.000 0.000 214 12 LX 0 0.000 Z14 12 LX 0 12 13 14 14 15 16 17 18 19 1000 10000 10000	Area Contour A Height of The Sect Area Contour A Height of The Sect Area ra Contour Ar Height of The Sects	Wind at 90 Point 1492 1493 ratio of net : rea 73 ion 80. Wind at Point 1692 1693 ratio of net at rea 70. 7 100 29. Wind at Point 1893 atio of net at ca 57. on 23.* Wind at Wind at Point 2002	and resonant 10° 1.000 X 37.614 37.614 37.614 37.614 37.614 1856 619 619 reso 90° 1. 42 424 476 reso: 90° 1.// 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 305 reson 90° 1.0 205 705	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 X .375 .313 .313 .313 .313 .313 .313 .313 .313 .313 .313 </td <td>$a_{J} p_{Z}$ 000 Y 000 3000 $44, 50$ $actoer \beta_{J}$ 0.000 $44, 50$ $ctoer \beta_{Z}$ 0.000 $44, 500$ $ctoer \beta_{Z}$ 0.000 Y 0.000</td> <td>0.0 2 0.0 2 0.0</td>	$a_{J} p_{Z}$ 000 Y 000 3000 $44, 50$ $actoer \beta_{J}$ 0.000 $44, 50$ 0.000 $44, 50$ 0.000 $44, 50$ 0.000 $44, 50$ 0.000 $44, 50$ $ctoer \beta_{Z}$ 0.000 $44, 500$ $ctoer \beta_{Z}$ 0.000 Y 0.000	0.0 2 0.0 2 0.0
Wind at 90° Point 1490 1491 Section 7 Synoptic wind Wind at 90° Point 1690 1691 cction 8 Synoptic wind Wind at 90° Point 1890 1891 cction 9 Synoptic wind Wind at 90° Point 2090 2090 2090	1.000 X 37.614 37.614 Por Heig 1 1.000 X 42.375 42.375 42.375 Point Height 1.000 X 39.813 39.815 Point Height Fi 1.000 X 31.349	10013.10 0.000 Y 0.000 Y 0.000 N 1690.000 Ft 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16950. 16950. 125925. 10.000 Y 0.000	Rg EN 0.000 Z 0.000 0.000 214 12 12 Kg EN 0.000 Z EN 0.000 Z 0.000 Z 0.000	Area contour A Height of The Sect Area Area Contour A Height of The Sect Area ra contour Ar Height of The Sects	Wind at 90 Point 1492 1493 ratio of net 1 rea 78.4 Wind at Point 1693 ratio of net a rea 70.7 1693 ratio of net a rea 70.7 1693 Wind at Point 1893 thio of net ar ac 57.0 23.4 Wind at Point 1893 thio of net ar ac 57.00 23.4	stresonan 10 1.000 X 37.614 37.614 37.614 37.614 37.614 1056 619 619 reso 90° 1. 422 42 422 42 476 reso: 90° 1.1 t 39. 39. 39. 39. 39. 90° 1.0 90° 1.0 2005 reson 900° 1.0 37.2 s 900° 1.0 31 31.	0.0 1 0.0 1 0.0 0 0.0 1 0.0 0 0.0 1 0.0 0 0.0 1 0.0 0 0.0 1 0.0 0 0.0 1 0.0 0 1 3.375 .375 0 .375 .375 .375 0 .375 .375 .375 0 .375 .375 .375 0 .375 .375 .375 0 000 X 813 ntour	$\begin{array}{c c} $	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0

	44.50%	nd contour	of net area a	Area ratio		2090
1.363	factor Cxt1	shape	57.372	contour Area		155
1.52	factoer B7	resonance i	23, 905	Height of The Section	kg	13223. 31
	N. 845	5	÷		KN	
0.000	0.000	1.000	Wind at 90°		0.000	0.000
Z	Y	X	Point		Z	Y
0.000	0.000	33.058	2092		0.000	0.000
0.000	0.000	33.058	2093		0.000	0.000

	Area ratio	44.50%			
	contour Area	67.2	shape	factor Cxt1	1.363
g	Height of The Section	28	resonance	factoer β_7	1.52
N					

Wind at 90°	1.000	0.000	0.000
Point	Х	Y	Z
2292	35.747	0.000	0.000
2293	35.747	0.000	0.000

ect	tion 10	Point	2290		
		Height	132		
S	ynoptic wind	Ft	14298.7	kg	Heigl
			142.987	kΝ	
	Wind at 90°	1.000	0.000	0.000	
	Point	Х	Y	Z	
	2290	35.747	0.000	0.000	
	2291	35.747	0.000	0.000	

2490

Point

Ft

Height

1.000

X

33.058

33.058

Section 9

ection 1

etion 13

Synoptic wind

Synoptic wind

Wind at 90°

Point

2090

2091

	Area ratio	of net area a	nd contour	44. 50%	
	contour Area	64.8	shape	factor Cxt1	1.363
	Height of The Section	27	resonance	factoer β_Z	1.52
0		Wind at 90°	1.000	0.000	0.000
		Point	x	V	7

2492

2493

	9	Height	106	
Syno	ptic wind	Ft	13292.07	kg
-			182.9007	IcN .
Wi	ind at 90°	1.000	0.000	0.000
	Point	X	Y	Z
	2490	33.230	0.000	0.000
	2491	33.230	0.000	0.000

Point

Height

1	Section 12	Point	2690	
		Height	78	1
	Synoptic wind	Ft	12628.34	kg
	20. 19. S		128, 2254	kN
	Wind at 90°	1.000	0.000	0.000
	Point	X	Y	Z
	2690	31.571	0.000	0.000
	2691	31.571	0.000	0.000

	nd contour 44.50%	net area an	Area ratio of
1.363	shape factor Cx11	64.8	contour Area
1.52	resonance factoer β_7	27 1	Height of The Section

33.230

33.230

0.000

0.000

0.000

0.000

Wind at 90°	1.000	0.000	0.000
Point	X	Y	Z
2692	31.571	0.000	0.000
2693	31,571	0.000	0.000

	44.50%	nd contour	of net area a	Area ratio		2890	Point	ion 13
1.363	factor Cxt1	shape	60	contour Area		52	Height	
1, 52	factoer β_7	resonance	25	Height of The Section	kg	10927.36	Ft	ynoptic wind
				n and a second secon	IcN.			
0.000	0.000	1.000	Wind at 90°		0.000	0.000	1.000	Wind at 90°
Z	Y	X	Point		Z	Y	х	Point
0.000	0.000	27.318	2892		0.000	0.000	27.318	2890
	0.000	37 410	150.5	C	0.000	0.000	27.116	1091

Section 14	Point	2990		Area ratio	o of net area a	and contour	44. 50%	
	Height	28		contour Area	62.4	shape	factor Cxt1	1.36
Synoptic wind	Ft	10248.29	kg	Height of The Section	26	resonance	factoer β_7	1.52
11 - 12		THE HEAD	1.37	0.5	2.2.4			
A second s			5.4 · · · · ·	er	A CALL AND			
Wind at 90°	1.000	0.000	0.000	1 1	Wind at 90°	1.000	0.000	0.000
Wind at 90° Point	1.000 X	0.000 Y	0.000 Z		Wind at 96° Point	1.000 X	0.000 V	0.000 Z
Wind at 90° Point 2990	1.000 X 25.621	0.000 Y 0.000	0.000 Z 0.000		Wind at 90° Point 2992	1.000 X 25.621	0.000 V 0.000	0.000 Z 0.000

Figura C.1 – Perfis Metálicos Utilizados na Estrutura

Figura D.1 – Curvas p-y Utilizadas ao Longo do Comprimento da Estaca (os índices das curvas de 1 a 20 se referem ao comprimento da estaca)